
Proof of Concept or Get The Fuck Out

0, $0 USD, 0 SEK, $50 CAD, 6× 1029 Pengő, 100 JPC. Mieux vaut vivre avec des remords qu’avec des regrets.
Compiled for a dozen reasons many dozens of times, the last of which was on February 3, 2024.
Eleven thousand persons have suffered death rather than submit to break eggs at the smaller end.

22
:0

2
(p

.5
)

A
M

as
k

R
O

M
T
oo

l
22

:0
3

(p
.1

1)
M

it
ra

an
d

M
oc

ky
22

:0
4

(p
.1

7)
M

or
e

L
et

te
rs

fr
om

Sc
re

w
ta

pe
22

:0
5

(p
.1

9)
In

si
de

ou
t

22
:0

6
(p

.2
3)

A
bu

si
ng

X
F
G

22:07
(p.30)

T
im

ecryption
22:08

(p.32)
A

n
Э

лектроника
and

a
C

asio
22:09

(p.39)
R

enesas
M

16C
and

R
8C

22:10
(p.46)

A
T
ourist’s

G
uide

to
Э

льбрус
22:11

(p.52)
Janus

P
olyglot

from the deepest of depths.from the deepest of depths.
Laphroaig reaches great heightsLaphroaig reaches great heights

Through desert & wilderness,Through desert & wilderness,

Legal Note: Did you personally sign a copy of the Official Secrets Act of 1939 before receiving this
document? If not, then there’s probably no law against sharing it.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo22.pdf and our other issues far and wide, so our articles can help
fight the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/
git clone https://github.com/angea/pocorgtfo

Technical Note: The electronic edition of this magazine is valid as both PDF and ZIP. Thanks to Ange
Albertini, it is also a polymock with many bogus file type signatures — check page 11.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC∥GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet with pages 1, 2, 67 and 68 should
be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt install texlive-extra-utils
pdfbook2 --short-edge --paper=a3paper --no-crop pocorgtfo22.pdf

Man of The Book Manul Laphroaig
Scooby Bus Driver Ryan Speers
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funkmaster of File Formats Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Stunts (Uncredited) Alexei Bulazel

with the good assistance of
Tree Killer EVM

2

22:01 Need something good to read, my good neighbor?

Neighbors, please join me in reading this twenty-
third release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine friends in Washington,
D.C.

If you are missing the first twenty two releases,
we suggest asking a neighbor who picked up a copy
of the first in Vegas, the second in São Paulo, the
third in Hamburg, the fourth in Heidelberg, the fifth
in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth
in Canberra, Heidelberg, or Miami, the sixteenth
release in Montréal, New York, or Las Vegas, the
seventeenth release in São Paulo or Budapest, the
eighteenth release in Leipzig or Washington, D.C.,
the nineteenth in Montréal, the twentieth in Heidel-
berg, Knoxville, Canberra, Baltimore, or Raleigh,
the twenty-first in Leipzig or Washington, D.C., or
the twenty-second in D.C. Three collected volumes
are available from No Starch Press, wherever fine
books are sold.

On page 5, Travis Goodspeed shares his tools
for reverse engineering a photograph of a mask ROM
into a ASCII art bitstream, and then converting that
physically ordered bitstream into logically ordered
bytes that might work in a disassembler or emula-
tor. If you need to reverse engineer microcontroller
firmware from before flash memory became cheap
and plentiful, this is the tool for you.

Ange Albertini wrote PoC∥GTFO 7:6, the clas-
sic article on abusing file formats with polyglots. On
page 11, he presents a follow-up with better classifi-
cations and the idea of “polymocks,” which are not
polyglots but easily confuse libmagic and its friends
into believing that file is valid in dozens of formats.

Eighty years ago, C.S. Lewis published the
Screwtape Letters, a classic of apologetics presented
as letters from a senior demon named Screwtape to
his junior nephew, Wormwood. On page 17, Pas-
tor Laphroaig shares with us a more recent set of
mis-delivered letters, in which Wormwood—now a
senior demon—writes to his young nephew Malört
about modern video clips, computer programming
and how hard it is for a concerned demon to earn
the wages of sin.

On page 19, Ange presents a series of tricks
building up to generic, reusable hash collisions for
tarballs and zipped XML files, such as .docx files.

3

Windows, LLVM and Grsecurity all have control
flow integrity schemes that can restrict the targets of
indirect calls, such as function pointers. Aleksandar
Nikolic has been playing with the eXtended Flow
Guard scheme from Windows 11, using the hashed
integrity markers as a means of reverse engineering
the calling conventions of functions. What began
as a mitigation against memory corruption exploits
has become an oracle for reverse engineering!

Stefan Kölbl and Ange Albertini have been play-
ing around with CTR mode, coming up with near-
polyglots that have a different meaning and file for-
mat for each of a few different key/nonce pairs. Page
30.

A long time ago in an evil empire far away, the
Soviet Union’s consumer electronics monopoly pro-
duced a pocket calculator, the Электроника MK-
51. This looks exactly like Casio’s fx-2500, and on
page 32, Travis Goodspeed deconstructs both cal-
culators to show that the MK-51 counterfeits not
just the look and feel of the Casio, but also its NEC
microcontroller and every last bit of mask ROM.

We’ve recently been including tourist guides to
new computer architectures, and this release is no
exception. Christopher Hewitt and Niccolò Izzo de-
scribe the M16C and R8C series of microcontrollers
from Renesas on page 39, beginning with the basics
and working their way up to a fault injection attack.
EVM can’t let them have all the fun, so page 46
presents his guide to the Elbrus 2000 architecture,
Russia’s domestically designed VLIW architecture
with register windowing.

Harvey Phillips shares on page 52 his Janus poly-
glot from the Binary Golf Grand Prix. It’s valid as
an x86 bootloader, ELF, COM, RAR, and a GNU
Multiboot2 image, but also as program for the Com-
modore 64! To keep the size to a minimum, many
of these formats have useful sections overlapping.

On page 68, we pass the collection plate, not
for bitcoins or wooden nickels, but for nifty stories.
What fine stories do you have, left untold except at
your local pub? With what clever tricks might you
grace our readers?

4

22:02 A Mask ROM Bit Extraction Tool
by Travis Goodspeed

Lately I’ve been writing a book on extracting
firmware from locked microcontrollers; rather, try-
ing to write that book, because I fell into a rabbit
hole of mask ROM reverse engineering. So for a few
months, instead of writing prose, I wrote a tool in
C++ for extracting bits from ROM photographs and
a matching tool to decode those bits into logically or-
dered bytes, suitable for disassembly or emulation.1

Let’s begin with a little background: SRAM,
DRAM, Flash ROM, and EPROM memory tech-
nologies hold bits invisibly as some form of electri-
cal charge. Mask ROM is different, in that bits are
written into one of the lithography masks that pro-
duce the chip. This is very expensive per unique
program, but very cheap per chip.

Many chips include a nice, orderly grid of bits
that contain code or data. Sometimes this is en-
coded in metal vias, which you can see from the
surface of a decapsulated chip. Sometimes bits are
in the diffusion layer, and you need to remove the
upper layers of the chip with hydrofluoric acid to ex-
pose them. And sometimes bits are implanted into
the doping difference between P and N silicon, re-
quiring a procedure called a “Dash Etch” to stain a
color difference into the bits after exposing them.

Whatever the chemical procedure, the end re-
sult from the lab is a panorama photograph of the
ROM under high magnification, with bits visible to
the naked eye. Like the ones on page 6, you will
see that some bits are bright while others are dark.
These are our ones and zeroes!

If you are more patient than I, you might type
these in manually, reading the ones and zeroes off
the page in the same way that as children we typed
BASIC program listings out of magazines. Instead,
it’s nice to let a computer do that work, with a hu-
man providing a minimum amount of guidance.

Prior Work

The first of these tools to be published was Rompar
by Adam Laurie in 2013.2 It’s a GUI application
in Python, in which the operator draws a grid to
mark the bit positions. OpenCV takes care of a bit
of image preprocessing, to make the bits stand out
by tossing away unneeded color channels.

Published later in 2019, but perhaps written ear-
lier, is Chris Gerlinsky’s Bitract.3 The user first
loads an image and then describes an “area of inter-
est,” a box containing so many rows and columns of
bit positions.

These tools certainly work, but they have some
problems that frustrated me enough to write some-
thing new.

Bitract requires a commercial image processing
library to compile in Borland C++. As a Windows
program, it ignores command line parameters and
has no CLI. As a Python script, Rompar makes too
much use of command-line parameters, requiring the
row and column count of each bit grouping to be de-
fined before startup rather than worked out on the
fly.

Both Rompar and Bitract expect bits to be
perfectly ordered in a grid, which is great for re-
ducing the operator’s labor, but difficult on very
large projects, where camera or stitching distortions
might move something just barely out of the grid.
It’s also inconvenient on some 4-bit microcontrollers,
where the final group of bits sometimes has fewer
columns than the others.

1git clone https://github.com/travisgoodspeed/maskromtool
2git clone https://github.com/AdamLaurie/rompar
3git clone https://github.com/SiliconAnalysis/bitract

5

Figure 1: Font ROM from a TMP47C434N

6

Bitract uses the mouse wheel to zoom, which is
infuriating on a multitouch pad that ought to be
able to both zoom and pan. Rompar, by contrast,
traps the user at the native resolution of the image.

I write these things not to criticize their work.
These were damned handy tools for their day. I just
think that things could be more convenient.

A Fresh Start
So I began from scratch, with a design on a paper.

For starters, I decided to support both a GUI
and a CLI. I wrote the GUI in Qt6, for portability
to Linux, Windows and macOS. The CLI is handy
for regression testing and scripting, but it is strictly
optional. All important features are available with-
out it.

Like Rompar, I chose JSON as a save format.
Like Bitract, my tool shows handy histograms to
quickly choose the best bit threshold.

I decided to avoid having a strict grid of bits,
but instead to use other objects to generate bit po-
sitions. In my early drafts, this was done by drawing
row and column lines, then identifying their crossing
points as bit locations. Because only the bit loca-
tions really matter, there’s plenty of time to add
support for marking grids later.

Since this is a CAD program at heart, I took a
few lessons from the PCB layout tools that I reg-
ularly cuss at. Design Rule Checks (DRCs) were
written early, implementing such features as iden-
tifying overlapping bits, ensuring that each row is
the same length, and sanity checking the design in
other ways. Each DRC violation has a position in
the project view, appearing as a yellow box beneath
the bits but above the photograph. DRC violations
can also be used for providing other feedback; the
list isn’t necessarily restricted to errors.

Determining a Bit’s Value

Knowing the position of a bit, how do we determine
whether it’s a one or a zero? The short answer is
that we can look at how bright or dark it is, but
there are some complications to consider.

The first is the color space. Often the bits are
distinct in one color channel but absolutely indistin-
guishable in another. And once we know the right
channel, we must select the right threshold to dis-
tinguish them.

I found that by drawing a histogram of the num-
ber of bits of a given color value, I could quickly
see a bimodal distribution in some channel between
ones and zeroes. Sliding a channel threshold auto-
matically updates all visible bits, as well as updating
a marker in the histogram to visualize where your
threshold is set.

I don’t use OpenCV or similar libraries to pre-
process my images. Rather, I’ve found that most
implant and contact ROMs consistently have a color
difference that can be found on a single pixel when
working with losslessly compressed images.

Diffusion ROMs are a little different, in that they
are low in the chip, and when the chip has been pro-
cessed a little too long, there’s no color difference in
the bit’s center. Rather, the bit has a dark border.
For these and other edge cases, my tool abstracts

7

away the measurement as a class that returns an
RGB triplet. To support this edge case, I simply
wrote classes that measured a thin horizontal or ver-
tical strip of pixels, returning the darkest point in
each color channel along that strip.

Aligning Bits Into Rows

After the user draws lines for all the rows and
columns of the ROM, we take those intersecting
points and produce a set of bits positions. Because
we don’t have a definite grid, it’s necessary to align
these bit objects into rows.

Initially I solved this problem very inefficiently,
implementing a function to find the next-to-the-
right of any bit by restricting its angle and marking
all bits I’d already passed. This worked great for
small ROMs, but it scaled horribly, and by one hun-
dred kilobits it was taking twenty minutes to align
the bits!

To come up with a faster algorithm, I realized
that sorting all of the bits by their X coordinate
would almost group them into columns. The ex-
ceptions come from the image’s tilt. Sometimes the
leftmost bits of the second column are to the left of
the rightmost bits of the first column.

We can therefore identify the leftmost bits by
following the sorted list. Whenever the Y gap is
small, say less than a few times the average gap,
we’re still on the first column and we’ve identified
another row header. If the Y gap is large, we’re see-
ing a bit from the second column, and we ought to
pass it by. When we start to see many large gaps,
we’ve passed the first column entirely and know all
the row header bits.

So to align the bits, I first build an array of the
rightmost bits of each column that I’ve yet passed.
This array is seeded with the row header bits at the
far left. I then walk through the sorted list of all re-
maining bits, overwriting their nearest row element
in the array after updating the old bit’s nextto-
right pointer to aim at the new bit.

This is lightning fast, reliably arranging hun-
dreds of thousands of bits in the blink of an eye.

From Physical Bits to Logical Bytes

By this point in the article, you should understand
how you might use MaskRomTool to mark the bits
of a photograph and arrange them into a table of bit
values. You also understand how the DRC mecha-
nism might flag bits which are too near the threshold
between a one and a zero. But there’s a very im-
portant piece we haven’t yet covered: How does the
software convert this table of physically-ordered bits
into logically-ordered bytes?

Let’s begin with the prior art. John McMaster’s
Zorrom tool is built as a set of Python scripts with
libraries for CH340, LC5800, LR35902, MCS48,
PIC1670, and some TMS320 chips.4 For those chips
that it doesn’t directly support, it has a solver fea-
ture that will attempt many permutations of decod-
ing until the bytes match a defined pattern, such
as setting the stack pointer in the first instruction.
John’s solver works for roughly half of targets, and
it’s far easier than manually guessing permutations.
This was the tool that I used until I recently wrote
my own decoder.

Chris Gerlinsky’s BitViewer uses the a to-
tally different strategy.5 Rather than automat-
ically searching permutations, it instead graphi-
cally displays the bits with adjustable grouping into
columns. This helps a human operator explore
the layout, while overdosing on caffeine in a hyper-
focused fugue until eventually the bits make sense.
This understanding doesn’t come easily, but I and
others have done it.

I wanted the best of both these worlds. From
Zorrom, I wanted a CLI tool that could quickly pro-
cess my projects, driven by a Makefile to rerun them
in order to catch regressions in my decoder or im-
ages. I also desperately needed a good search fea-
ture, and Zorrom was the only example of such a
thing when I started. And from BitViewer, I wanted

4git clone https://github.com/JohnDMcMaster/zorrom
5git clone https://github.com/SiliconAnalysis/bitviewer

8

1 111110111111100001111111111111111111111111111111
111110111111100011111111111111111111111111111111

3 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

5 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

7 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

9 111110111111100011001111000011011101110111111111
111110111111100001011100001111011101101111111111

11 111110110111100011110101000111001100011111111111
111110110111100000001100001111011110101111111111

13 111110111111100001010101000111001100101111111111
111110111111100010100100001111001110011111111111

15 111110111110100001010100001111001100101111111111
111110111111100011111000001001011111110011111111

17 111100111111010011110101110111101110010111111011
111100110111010010100111111111011010110011111110

19 111100111111010001001111011011110011101110010110
111100111111010011111111111111110001111101110010

21 111100110111010011111110111111110011111110000110
111100111111010001011111101011110011101100110010

23 111100111100010011111111111111100001111110010110
111100111111010010100011111101101110010001011111

25 101100111111010001010101110110100010000110000000
111100111111010010100111111101010010110000000011

27 111100111111010011111110111101111111111111101111
111100111111010011111111101001111111111111101111

29 111100111111010011001111011001111111111111101111
101100111111010011111111111101111101111111101111

31 011100110100010011111111111101101101111111101111
111100111111010000000011111100100010000000000010

33 111000110110001001010000110100100010000110010000
011000110110001010100011001010010010110010010101

35 101000110010001011111011111110111111111111111101
101000110010001011111011111110111111111111111101

37 011000110010001011111011111110111111111111101101
111000110010001011111011111110111111111111111101

39 111000110100001011101011011010111101111101111001
111000111111001000000011111100100000000000000000

41 111000111111001001010101110100100010001100010000
101000111111001010100111111011010010110010011111

43 011000111111001011111110111111111111111101111111
011000111111001011111111001111111111111111111111

45 101000111111001011111111111111111111111101101011
111000111111001011111111111111111101111111101101

47 111000110100001011111111111111111101111111111111
111000111111001000000011111100100010000000010010

49 010010111111000111110101110101100010000110010010
110010110111000110100111111011010010110010011111

51 110010111111000101011111111111111111111111111011
110010111111000111111111111111111101111111101111

53 110010110111000111111110111111111111111111101111
010010111111000101011111001111111111111111111111

55 100010111100000111111111111111111101111111111111
110010111111000110100011111111100010000000010010

57 110010111111000110101111000011011100100011111011
110010111111000100001100000011001100000010001110

59 110010110111000110100101000001000000000010010110
110010110111000100000100000011000010000010011110

61 110010111111000100001101000001000100000010101110
110010111111000110100100000011000010000010010010

63 110010111100000100001100000011000100000010101110
110010111111000110101000000011011110100001011111

Figure 2: Extracted Bitstream and Datasheet Bytes of the TMP47 Font ROM

9

some graphical connection to my project file, so that
a nearly correct guess could be explored until the er-
ror was found.

My decoder is called GatoROM. It is used ei-
ther as a CLI tool without the GUI overhead of
MaskRomTool, or as a C++ library within the GUI.

Since Zorrom was the gold standard of solving
for unknown layouts, I began my decoder with the
complete set of Zorrom permutations from an ar-
bitrary bitstream, essentially exporting every case
that it would investigate. Once I could match de-
codings of all these, and also permute between all
settings, I knew that my solver had feature parity
with McMaster’s.

GatoROM uses its own class to represent a bit,
different from that in MaskRomTool. The class
holds values such as its address and bitmask during
the most recent decoding, as well as a void pointer
that might point to a matching bit in the GUI.

All of the GatoROM bits begin in a table of their
input positions, and transformations (flip, rotate,
etc) produce a table of bits in the output order. This
output table is then passed to the parser for decod-
ing, when the address and bitmask fields of the bit
class instances are updated to record their logical
positions. Zorrom does these steps in roughly the
same order, but by passing values instead of point-
ers, it does not preserve relationships between the
inputs and outputs.

I wrote earlier that I also wanted something
like BitViewer’s interactive nature in my tool. By
recording the address and mask of every bit that is
decoded, my tools can easily show their work. It’s
no trouble to select the first few bytes of a decoding,
then ask the tool to highlight the bits of those bytes
in physical order.

Neighborly greetings to John McMaster for his
ground breaking work on Zorrom, for helping me get
my lab back together, and for patiently explaining
all those things of semiconductor reverse engineer-
ing that I had fallen behind on in the past years.
And cheers to Vicki Pfau for being smart enough to
decode the arrangement of the TMP47 font ROM,
which will soon lead to a general decoder for TMP47
program ROMs.

My tools don’t yet solve every ROM that was
ever manufactured, but I’m happy to say that they
are now the best tools for any particular ROM ex-
traction job. They are fast, they hardly ever crash,
and they run reliably from the command line or from
an OpenGL GUI, whichever you might prefer.

Now that I’ve solved that problem, perhaps I can
get back to finishing my book?

10

22:03 Mitra and Mocky: Near-polyglots and Mocks
by Ange Albertini

Our readers are encouraged to read Abusing File
Formats (PoC∥GTFO 7:6). This is a follow-up with
better classification, leading to the creation of tools
to automate the generation of various kinds of weird
files: mocks, polyglots and near-polyglots. We also
share a tool, Mitra, to help apply these techniques.

The basic idea to abuse files is to make space for
foreign data that will be ignored by parsers. This
can rely on various features of the targeted file for-
mat.

Signature Some formats like MP4 and PostScript
are parsed from offset zero, but they don’t enforce a
magic at that offset. As a consequence, it’s possible
to make a MP4 / PostScript polyglot by abusing the
length of an MP4 atom to encode a PostScript dec-
laration for a dummy function that will cover more
MP4 structure.

A polyglot MP4/PS header starting a dummy
function but also an MP4 free block.

/PostScript/ whitespace then line comment
2 00:00 00 00 % f r e e \r \n % ! P S \r \n

\----MP4 ---\ Declares a comment of length 0x25
4

/PostSc ./ Declares a function name
6 then a line comment

10: / { (% 00 00 00 00 00 00 00 00 00 00 00 00
8 20:00 00 00 00 00 00 00 XX f r e e \r \n) }

\---MP4 ----\ Declares a comment len

The same bytes look quite different when inter-
preted as a PostScript file, where 00 00 00 XX de-
clares the length of a free chunk covering the whole
PostScript.

\0\0\0% free
%!PS
/{(\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ xXXfree
)}

Starting parsing at offset zero is only a half-
measure against file-format abuse. Only when sig-
natures are enforced at the very beginning will file
format abuse and confusion become impossible.

On the other hand, having a signature for each
frame such as Ogg or ILDA can be superfluous if the
frames are properly length-defined.

Cavities Some formats start with cavities, which
are totally ignored. We used to call these empty
spaces.

A typical example is the ISO format, being a
raw dump starting with empty sectors. This is com-
monly used in IsoHybrid to make a single ISO that
boots either as a thumbdrive or as a CD-ROM.

Another example is the DICOM format, which
by courtesy skips the first 128 bytes of the file. A
magic signature and enforced structure are required
after that range. This is particularly convenient for
TIFF files, since unlike most picture formats, the
eight-byte long Image File Header points to the File
Directory, which points to the image data, so it’s
easy to move the big chunks of structure and data
around the DICOM ones. In short, a TIFF/DICOM
polyglot is easy, and a TIFF/DICOM chimera—
sharing the same image data—is even possible.

Appended data Most parsers will ignore any
further data once the file is considered “complete
enough,” which is determined by whether some kind
of recovery is required or not.

It might be explicit via some kind of terminat-
ing marker. Or it might not, when enough data
is present or by intentionally triggering a parsing
bug to end the parsing. An example of trigger-
ing a recursion exhaustion warning can be found in
PoC∥GTFO 17’s AGC polyglot.

Data added after the end—and ignored—is
called appended data, but it’s rarely mentioned ex-
plicitly in the specifications. It’s simply tolerated.

Some formats actively prevent appended data by
having a footer. A footer can be thought of as a spe-
cific structure required to be at then the very end of
the file such as ID3v1, which is a footer appended
itself to a MP3/Layer3 stream, or the XZ archive
format, which officially enforces a footer to define a
file as complete.6

Other formats like Dicom, Ogg, ILDA or
PCAP[NG] enforce the whole file to follow a given
structure: they’re just pure sequences, sometimes
even requiring a magic signature for each structure
such as ILDA or Ogg. They just go on parsing ev-
erything from the file, and returns an error since it’s
invalid.

6See “The .xz File Format, v1.0.4.”

11

Metadata Since it’s present in the file but not
needed for parsing or rendering the file’s contents,
metadata is a great source of abuse. Many old school
formats have fixed length fields, as hard coding was
the norm back then.

Comments are typically ignored empty space
with typically a set length that is declared before,
and are present in most file formats. Unlike PDF,
XML enforces an encoding for its comments like the
rest of the file, but in general, comments are just ig-
nored, and preserved, no matter their amount, their
length or their content.

Comments are not the only source of abuse. Ex-
tensible metadata with a user-chosen ID, or fields
like file names in an archive can also be used to
store some foreign data. A notable exception is that
in Gzip, the optional comment and file name are
null-terminated, which shows that they’re intended
to store standard text, while the also optional Extra
Field is defined with a 2-byte length.

As a side note, metadata may seem like a perma-
nent risk entirely, and it’s natural to wonder why we
define them officially in every format if they are so
easily abused later. While metadata doesn’t seem
like an initial requirement to keep the format simple
— like the Quite OK Image format — it is even-
tually needed to be able to keep extra information
in the file, which is exactly what happened for the
MP3 files.

At the release of l3enc (the original Mpeg Layer
3 encoder in 1994), the files initially had an l3 ex-
tension, had no file format whatsoever. They were
pure sequences of layer 3 frames, each with their own
frame header with no signature, making them hard
to detect and easy to confuse with other data such
as JPEG segments.

Since there was no way to store any metadata
in L3 files, the compatible ID3v1 footer with a hard
coded length was unofficially defined. More struc-
tures were defined in other clumsy ways around the
L3 stream (Xing, Lame, APE, . . .), showing the
need for proper definition of metadata storage from
the beginning. ID3v2 eventually defined a header,
a magic which gave at last a proper format to MP3
streams.

It’s a shortsighted move to come up with a great
compression algorithm (e.g., MP3, QOI) and define
a way to store some data in a file format without
the ability to extend it with new but optional data
in the future. Even if it means that these structures
can be abused, you can’t have an extensible format

that can’t be abused, and people will extend or fork
your format if not, requiring an extra format that
could have been avoided from the beginning.

Wrappending Some formats don’t tolerate ap-
pended data, but they can end with a parasite-
hosting structure, which acts like appended data,
just wrapped in a declarative structure. Since most
data-storing structures have all their declaration be-
fore their data itself, it behaves like appended data
from the outside, even if the length of the appended
data has to be declared somewhere. It looks like ap-
pended data — ignored but tolerated but it’s techni-
cally an appended parasite — declared and skipped.

Zipper Some formats have very strong con-
straints: a tiny cavity, or very small parasite length
(256 bytes for a GIF). Rather than parasitizing a
whole file, let’s just add the declaration of the file,
a declaration of a comment, and then store the rest
of the file as appended data.

A zipper is a fabric construct of two sliders where
each tooth interlocks with the other side’s tooth. As
an analogy, a zipper is a file construct where each
format comments the other format’s elements, and
each tooth is a parasite for the other format.

The simplest form of a zipper is made of two for-
mats: Format A starts at offset zero, tolerates ap-
pended or wrappended data, and Format B starts
with a cavity. Both formats can be parasitized.

 FileA FileB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ ∙ ∙
 ├─────┤ ∙ ∙
BodyA │░░░░░│ ├─────┤
 │░░░░░│ │▓▓▓▓▓│ HeadB
 ╘═════╛ ├─────┤
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

12

We parasitize File A with Head B, adding
padding if required. We also parasitize File B with
Body A, wrappending Body B in advance if required.

 ParaA ParaB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ ∙ ∙
 ├─────┤ ∙ ∙
 ├─────┤ ├─────┤
 │▓▓▓▓▓│ HeadB │▓▓▓▓▓│ HeadB
 ├─────┤ ├─────┤
BodyA │░░░░░│ BodyA │░░░░░│
 │░░░░░│ │░░░░░│
 ╘═════╛ ├─────┤
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

When we merge these files, it looks like this.

 Zipper
 ┌─────┐
HeadA │░░░░░│
 ├─────┤
 ├─────┤
 │▓▓▓▓▓│ HeadB
 ├─────┤
BodyA │░░░░░│
 │░░░░░│
 ╞═════╡
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

Zippers combines various format features (cav-
ity, parasite, appended data) to overcome limita-
tions and make even more weird formats combine.

Mitra is a tool that combines all this knowledge
for 40+ different format, generating hundreds of for-
mat combinations with different strategies.7

Mitra is a simple tool. It doesn’t understand
file formats structure, it just contains the minimum
amount of information to identify and parasitize a
file format. It expects standard files as input!

Abuses

Payload embedding The simplest form of ex-
ploitation is to just embed a payload that doesn’t
need to be a valid file. In this case, use the --force
command line parameter.

The universal example for that is HTML or
JavaScript that can be embedded in most file for-
mats. If the file is too big, the HTML page might
take too long to load entirely. In that case, use
JavaScript to break out of the appended data and
limit the parsing to the web payload only.

Mocks While 7:6 covered file type identification,
it didn’t cover any exploitation. The easiest way to
exploit file type identification is just to give a binary
blob the right signature at the right offset. It could
even happen accidentally. Such a file is a mock file.
A simple example is FF D8, a two byte file that can
be identified as a JPEG image.

Polymocks It’s also interesting to just add a
mock signature at a given offset in a valid file via
any of the previously mentioned techniques.

Mocky is a tool that uses the Mitra library to in-
sert specific filetype signatures at specific offsets to
create polymocks.8 Since programs like file have
so many signatures that they are scanned by alpha-
betic order of their category, it’s possible to predict
which detection will be returned first, and the order
might not be what you’d expect from a threat model
perspective.

Of course, it’s possible to cram as many signa-
tures as possible within the constraint of the target
format, such as this issue, a valid PDF with many
extra mock signatures stored in a standard stream
object. Here is an example of such a polymock file,
with many filetype detections yet no valid content:

0+2 Dos executable
2+2 Arj
4+2 JPEG 2000
6+2 UnicOS
8+4 Symbian
C+4 Sndh
10+4 Nintendo Switch
14+4 Zoo
18+4 Nintendo Wii
1C+4 Rar v1.4
20+4 AFS
24+4 zImage
28+4 PkZip
2C+4 PolyTracker
30+6 SymbOs
36+6 7-zip
3C+4 SoundFX
40+4 VirtBox
46+2 Int 21h
48+4 PkZip
4C+4 ScreamTracker
50+8 Rar v5
58+4 LrZip
5C+8 Plot84
64+7 Rar v4
6D+5 EZD Map

72+6 Xz
78+4 LZ4
7C+4 LZ4
80+4 DICOM
84+C PDF

Dos executable
Arj
JPEG 2000
UnicOS
Symbian
Sndh
Nintendo Switch
Zoo
Nintendo Wii
Rar v1.4
AFS
zImage
PkZip
PolyTracker
SymbOs
7-zip
SoundFX
VirtBox
Int 21h
PkZip
ScreamTracker
Rar v5
LrZip
Plot84
Rar v4
EZD Map

Xz
LZ4
LZ4
DICOM
PDF

..

.. ..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

5x

6x

7x

8x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

5x

6x

x4

7x

x2

8x % P D F - 1 . 4 \n o b jD I C M

03 21 4C 1804 22 4D 18FD 7 z X Z \0

M A P

(

R a r ! 1A 07 \0

P L O T

% % 8 4

L R Z IR a r ! 1A 07 01 \0

S C R SP K 01 02CD 217F 10 DA BE

S O N G7 z BC AF 27 1CS y m E x e

P T M FP K 03 0418 28 6F 01N X S B

R E ~ ^5D 1C 9E A3DC A7 C4 FDN R O 0

S N D H19 04 00 1001 07j P60 EAM Z

00 00

00 00

7git clone https://github.com/corkami/mitra
8unzip pocorgtfo22.pdf mocky.py

13

Running file with --keepreading gives an im-
pressive list of detected formats:

Plot84 plotting file
SymbOS executable v7.z, name: ...
Old EZD Electron Density Map
Zoo archive data , vj., modify: v78 .88+
Symbian installation file
Scream Tracker Sample adlib drum stereo ...
Poly Tracker PTM Module Title: "MZ...
SoundFX Module sound file
Nintendo Wii disc image: "NXSB ...
DICOM medical imaging data
Linux kernel ARM boot executable ...
VirtualBox Disk Image , minor 8653 (MZ...
JPEG 2000 image
ARJ archive data
COM executable for DOS
unicos (cray) executable
data

Mocky has a --combine flag for to try and insert
as many signatures in a file as possible.

file has an extra weakness that it has special
support for tar files before any other format, and can
identify tar files not by their magic, but by the valid-
ity of their header checksum, even without any tar
signature in the file. This is used in this issue too,
so even if the file is a standard PDF starting with
a generic PDF signature, file with no parameter
sees it as a tar archive, even if it doesn’t contain
a magic Tar signature.

Mocky will adjust the tar checksum if used for
a polymock file. Here is such a empty mock.tar
file, detected generically as tar archive even if it
contains no signature at all:

000: 00000000 00000000 00000000 00000000
...
090: 00000000 4 0 0 00 00000000
...
1F0: 00000000 00000000 00000000 00000000

Adding a valid tar checksum to the previous
polymock example will indeed return a tar filetype
— if the --keep reading parameter isn’t used —
despite all the other present signatures.

Near-polyglots Formats that require a different
signature at the same offset can’t be combined in a
polyglot. However their combination can still be ex-
ploited in different conditions. Near polyglots are
files that are almost polyglots, except that some
bytes have to be replaced so that the file type
changes.

This change could happen over the network if
some packets arrive in a different order. It could
also happen due to weak bits, leading to different
contents. And it can happen via a cryptographic

operation in which case you can call them crypto-
polyglots.

One of these use case is Angecryption, intro-
duced in PoC∥GTFO 3:11, where I demonstrated
abusing the Initialization Vector of CBC, CFB or
OFB block modes to replace the first block of the
crypto-polyglot. A new abuse of pseudo-polyglots is
presented in the TimeCryption article on page 30 of
this release.

To generate a near polyglot, you need very
light constraints. FormatA can be parasitized and
FormatB can start at the same offset, and needs to
tolerate appended or wrappended data. Technically,
generating a near polyglot is like parasitizing a for-
mat, ignoring that they both start at overlapping
offsets, and keeping the head.

 FileA FileB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ │▓▓▓▓▓│ HeadB
 ├─────┤ ├─────┤
BodyA │░░░░░│ │▓▓▓▓▓│ BodyB
 │░░░░░│ │▓▓▓▓▓│
 └─────┘ ╘═════╛

Just parasitize FileA with BodyB and keep
HeadB as the overlap:

 NearP Overlap
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ │▓▓▓▓▓│ HeadB
 ├─────┤ └─────┘
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 ╞═════╡
BodyA │░░░░░│
 │░░░░░│
 └─────┘

The minimum length overlap is basically the
number of bytes where you can declare a file then
have some unparsed space, either naturally or by
declaring a comment. This value can change drasti-
cally between file formats, as shown on page 15.

For example, it’s 1 for PostScript because you
can declare a line comment with %, so provided
there’s no encoded newline after decryption, this will
be a valid ignored space. The PE file format’s min-
imum overlap is two bytes — M Z — because you
can abuse the DOS header, limiting you to a 58-
byte parasite.

A JPEG header with comment declaration is FF
D8 FF FE XX YY, which is six bytes, with XXYY be-
ing the length of the comment in big endian. How-
ever, if you need a 0x3489-long comment, a 0x35??-
long comment will do the trick, so you don’t have to
bruteforce the YY byte. If you feel luck, you might

14

Variable Unsupported
offset parasite

Minimal start offset
1 2 4 8 9 16 20 23 28 34 40 64 94 132 12 28

12 26 32 36 68 112 226 16

P P J F M T F W G P R I R B C I P C J P E A P I I J W B O B E G L N
S E P l P I L A Z N I D T M P L S A P C L R C C C a A P G Z B I N E

G a 4 F V D G F 3 F P I D D B 2 A F A O C v S G G 2 M F K S
c F F v O A P P a M L

2 N
G

1* PS . M A ? ? ? ? ? ? A ?
2@ PE M . A A A A A A A A A A A A A A A A A A ! ! ! ! ! ! M M M ! ! ! ! !
4+ JPG A A . A
. .
. . [the table could go on but would take too long to bruteforce]

X: automated ?: likely possible
M: manual !: unknown

* Hack that relies on line comments with GhostScript. Requires the parasite not to contain any new line,
after encryption.

@ Hack relying on overwriting the DOS Header, therefore restricting the parasite space to offsets 2-60.

+ Signature, comment declaration and length are two bytes apiece. To specify them all is six bytes, but if
we round up the big-endian length and leave its low byte uncontrolled, we only need five. And if we
leave the length entirely uncontrolled, we only need to fix four bytes.

Figure 3: Minimal start offsets of file formats, and exploitation via near polyglots

15

also gamble on the length and not bother to brute-
force XX either.

Mitra can generate such files with the --overlap
parameter. It keeps the overlap’s content in the file-
name as well as the offsets where the content changes
formats, to be re-used later by AngeCryption or
TimeCryption scripts.

Ambiguity Files with different interpretations
depending on parsers we now call ambiguous
and previously called schizophrenic, werewolves or
shapeshifters. There are plenty of sources of this
ambiguity.

When a value such as a pointer never changes
across standard files, it’s tempting for a parser to
simply ignore it. Putting some contents under un-
usual conditions while putting other contents under
the typical conditions might reveal a difference be-
tween the two parsers.

Sometimes a value is represented twice. For ex-
ample, a buffer with a declared length might also
end with a null terminator. What if that termina-
tor happens earlier than the declared length? Which
length value is the real one? Or if you declare the
same value twice, and there isn’t an error, does the
first or the second declaration take priority?

If you corrupt a format on purpose and the
parser tries to rebuild the file, how does it do it first?
What if you put a valid file structure in a comment?
Such recovery algorithms are typically not officially
specified, so each developer might do it differently.

Some formats are extending older formats. Both
the old and the new formats are present in the file.
These formats are naturally ambiguous at a format
level, and we might call them ambiguous polyglots.

A widespread example is the Portable Exe-
cutable, defined as an extension of the DOS format.
Preciously few PE files—such as regedit95.exe—
have a meaningful DOS payload. Valid PE files are
expected to just have the same DOS stub with no
unique code.

Robert Xiao proved us wrong by crafting a uni-
versal Doom binary, which works from DOS 6 to
Windows 10, both as valid DOS and PE payloads in
the same file.9 This is something like a father and
son having the same name, with no distinctive suffix
whatsoever.

Ciphertexts can be ambiguous too, even despite
authenticated encryption! Check the TimeCryption
article page 30 in this issue for abuses of GCM,
GCM-SIV and OCB3.

Collisions PoC∥GTFO 19:05 covered a lot of de-
tails for exploiting hash collisions. However tar.gz
and DOCX (ZIPped XML)—which were initially
thought to be unexploitable—are properly dealt
with and explained in the Inside Out article on
page 19.

Conclusion
With basic knowledge of file format identification
and abuse, Mitra can try different strategies and
generates many forms of file abuse: payload embed-
ding, mock files, polyglots and pseudo-polyglots.

Pseudo-polyglots are the unified. form of file for-
mats abuses to be combined with cryptographic op-
erations. They include both AngeCryption, cover-
ing ECB, CBC, CFB, OFB modes, and TimeCryp-
tion, covering CTR, OFB, GCM, OCB3, GCM-SIV
modes.

Extensions of Mitra might cover ambiguous files
with standard strategies, hash collisions and hash
collisions over different formats.

9git clone https://github.com/nneonneo/universal-doom

16

22:04 More Letters from Screwtape
by the Demon Wormwood, and certainly not by Manul Laphroaig

My good neighbors,
Some of you surely remember those letters from

a certain Uncle Screwtape to his nephew Wormwood
that C.S. Lewis published eighty some years ago.
Though some discount those letters as apologetics,
a believer’s fictional account of demons discussing
the best way to corrupt a well meaning (but poorly
behaving) soul into perdition, I’ve often wondered
with which modern sins Screwtape might be corrupt-
ing his patients these days.

Imagine my surprise when a mistake of the post
sent the following to my door, which I reproduce
faithfully and without redaction or comment.

–PML
– — — – — — — — – — –

My dearest nephew Malört,
I’m overjoyed to have heard that your patient

still spends long, wasted days on social media, see-
ing that others have adventures but never partici-
pating in them first hand. The cat videos worry me
a little, but so long as he can’t give the cat noms or
scritches I guess it can’t feed his soul.

Do be careful, though. The same Internet that
feeds your patient and endless supply of computer-
generated voices reading forum posts over a video
game is entirely capable of giving him more danger-
ous things. It can teach him to repair a car, and it
has all the novels that we worked so hard to have
censored back in my uncle Screwtape’s day.

Censorship back then the real deal. We had
so much fun having our patients light a pyre and
tossing books into it, that we eventually forgot the
whole point was to keep the books from being read.
These days, the Opposition has perverted our fine
tradition into something called Banned Book Week,
where they give away free copies of the books we
worked so hard to squash! One of them even por-
trays your great grandfather Behemoth as a pudgy
cat, thrown out of street cars after paying his fare
and getting into a shoot-out with the NKVD. How
insulting.

Keep me apprised of your patient’s progress, and
be sure to watch for any signs of his finding anything
useful out there.

In service of our Lord Below,
–Wormwood

Malört, we have to talk.
I read in your last letter that your patient has de-

clared himself to be a “computer programmer,” and
that his television set has been off for a week while
he repeatedly stumbled through the same chapter of
a 21 Days book.

You needn’t worry that two more weeks will de-
stroy your careful work in maintaining his illiteracy,
but two more months might see you transferred to
Search Engine Optimization or some other depart-
ment with no souls to corrupt. Pay attention!

A number of strategies might work here, but I
heard of an excellent new one from your cousin, Le-
gion. The idea is not to dissuade your charge from
learning to program, but to slowly twist the idea of
programming until he learns nothing useful.

Begin with the choice of language. Ages ago,
we’d start endless debates about whether BASIC
was harmful and whether Pascal was for idiots. That
kept good engineers from learning to read spaghetti
code or use a language with safe strings, but now
language arguments are going out of fashion. No one
cares to debate them endlessly, just as the humans
have largely forgiven one another for using different
text editors.

No, the trick these days is Artificial Intelligence.
They might call it Large Language Models, and they
recently called it Machine Learning, but the beauty
is that the user feels like he’s programming a com-
puter while never actually writing any code.

So direct him back to the thirty-second videos,
and whisper in his ear that “prompt engineering”
is the bees knees. Get him to scroll endlessly, and
know that if he does try some stuff on the prompt,
he will never see the endless gigabytes of linear al-
gebra beneath it all. It will feel like it makes sense,
at least for thirty seconds, and then there will be
another video.

Your uncle,
–Wormwood

17

Nephew Malört,
You are awfully worried that your patient has

joined a hackerspace, and not without reason. After
that gambit of yours to make him unemployed for a
few months, he now has time on his hands to join a
club, and there’s danger that club might teach him
something.

To prevent this, you just need to make the space
a hassle for him instead of an inspiration. Take sol-
dering for an example: if he keeps at it, he will quite
soon become good at it. And if he gets good at it,
he’ll be able to assemble surface mount kits that the
others cannot, which might give him the confidence
to design his own. This can’t be allowed to continue!

So whisper a little in his ear. Make him turn the
iron too hot, or let it crust up overnight when no
one is watching, to get those barnacle covered tips
that make an expert struggle.

If he uses enough flux, tell him it’s too much, and
if he really uses too much that’s not a problem, so
tell him it’s an embarrassment to his grandfather’s
grandfather that so much flux is wasted on an LED
throwie.

When he makes a reparable mistake, like using
the wrong resistor value, be sure to fill him with
shame. And if no magic smoke escapes, double up
on the shame, as if he’s the very first to have an
LED that’s a little bright or a little dim on account
of its series resistor.

When you come visit the eighth circle, we might
discuss other ideas. My grandfather once got some
monks to fight for a century over whether they were
“of” the Enemy or “with” the Enemy, and I bet we
could trigger a similar fight between 60/40 and lead-
free solder.

–Wormwood

Nephew Malört,
In your last letter, you made smug references

to your patient “blinking LEDs with an Arduino,”
and I worry that you don’t understand how serious
this might be. Arduinos might use 8-bit microcon-
trollers, but they are programmed in an easy dialect
of C!

And worse, Arduino is a dialect of C for which
a thousand convenient examples are shared without
intimidation. If your patient first blinks LEDs, he
might later blink them in sequence, or display the
temperature on them. Pretty soon he might extend
the examples with original code, and I worry that
you might make side remarks about this too, ignor-
ing the danger.

For the danger in these blinky lights is that they
are projects. In the same way that one might fail
to learn Spanish from a book for years, but quickly
learn the basics when there’s no other way to buy
food, a project has the power to make a boring lan-
guage exciting. Your same patient—the one who
a few short months ago wasted a month without
getting to the second chapter of his 21 Days book—
might soon finding himself giving a shit about C.

Once he gives a shit, how long do you expect
it might take him to learn a language with just 32
keywords?

–Wormwood
– — — – — — — — – — –

Uncle Wormwood,
I write to you just before sending my resigna-

tion to Our Father Below. The Patient has indeed
picked back up his 21 Days book, and this afternoon
I overheard him explaining pointer arithmetic to a
friend.

I’m ashamed to say, the explanation was right.

Your disgraced nephew,
–Malört

18

22:05 Inside Out; or,
Abusing archive file formats.

by Ange Albertini

We have previously demonstrated hash
collisions in documents with blocks of 64
bytes, such as the great MD5 pileup in
PoC∥GTFO 19:05. This used colliding, aligned
blocks in pocorgtfo19.pdf to match a hash
of pocorgtfo19.exe, pocorgtfo19.png and
pocorgtfo19.mp4. That is to say, these files were
not identical, but they did share an MD5 hash.

This research started with an incorrect assump-
tion that Zip, TAR, and GZIP couldn’t be gener-
ically exploited with collisions. Even with the
almighty chosen-prefix collisions, I thought that Zips
may not work, XML will never work, and GZIP will
always trigger a warning.

Zip is the most collision unfriendly of standard
file formats: bottom-up, pointers everywhere, dupli-
cated data... Since they are officially parsed bottom-
up, you can’t even use a Chosen Prefix Collision on
a pair of Zip files if their size difference is bigger
than 64 kb, as the EoCD (end of Central Directory
record) of the smaller archive will be too far from
the end of the file to be found, thus making the file
invalid.

On top of that, some critical data (such as file
length, name, and content CRC32) is duplicated in
the Local File Headers and in the Central Directory
for a given file, which means it is present before and
after the file contents—thus preventing any generic
exploitation.

And unlike most archive formats, Zip is a tree of
pointers between structures instead of sequences, so
any size change of file content will propagate on the
rest of the file: the last structure of the file contains
a pointer and the number of archived files.

XML files also don’t play nice with collisions:
CDATA comments are defined in XML files, but they
have to use the defined encoding, which is incom-
patible with the randomness of collision blocks.

XML files don’t tolerate appended data either.
It’s another totally collision-unfriendly format.

DOCX files are Zip archives containing XML
files and various data files, such as JPEG and PNG
images.

Root file In DOCX files, the /_rels/.rels file
plays a very special role. It’s the root of the docu-
ment, which points to other XML files of the docu-
ment. It defines the relationships between the files.

You can move the files around provided you up-
date the root, which requires a hard-coded path and
filename in the archive. You can also make two doc-
uments co-exist in the same archive, pointing to ei-
ther in the root file. A valid strategy to generically
collide two documents seems possible.

Collision blocks You can’t store the collision
blocks after the XML content, since that would in-
validate the root file’s XML structure. And we can’t
easily forge the CRC of collision blocks, so we can’t
store them in the contents of a dummy file.

However, we can store the collision blocks in the
Extra Field of a file, since Extra Fields don’t have
a CRC. Extra Fields were defined in 1990, in the
very first version of the specifications.10 They are
commonly used and very extensible, so many im-
plementations both ignore this field and preserve it.
Extra Fields are stored before file contents, so they
can’t be stored in the Local File Header of the root;
a dummy file stored after the root file can be used
as a host for them.

It’s easy to force the same length for the root
file. We just need to choose two close paths for each
document. Storing them rather than compressing
them guarantees the lengths to be identical and pre-
dictable.

CRC You need to keep the root file CRC con-
stant despite the collision blocks, since the CRC is
duplicated near the end of the file in the Central
Directory.

Forging a CRC is easy, but CRCHack makes it
super easy!11 Just specify the bits you want, and
it instantly gives you the requested output with the
requested CRC32 without any encoding violation.

As an example, we now demonstrate forging a
CRC with ASCII characters.

$ cat ascii
10unzip pocorgtfo22.pdf APPNOTE-1.0.txt
11git clone https://github.com/resilar/crchack.git

19

<!--ABCDEF-->
$ crchack \

-b 4.0:+.8*6:1 -b 4.1:+.8*6:1 \
-b 4.2:+.8*6:1 -b 4.3:+.8*6:1 \
-b 4.4:+.8*6:1 -b 4.5:+.8*5:1 \
ascii 0xdeadf00d

<!--tuI_\Y-->

Only with the uppercase bit of letters:

$ cat letters
<!--THESEKINDSOFCRCAREVERYIMPRESSIVE-->
$ crchack -b 4.5:+.8*32:.8 letters 0xcafebabe
<!--thEsEKIndsOFcRcAReVEryiMPREssIVe-->

So now we have two versions of the root files,
with the same CRC, the same length, and via a
dummy file with Extra Field containing HashClash
collision blocks: the two Local File Headers that give
the archive the same MD5.12

Results Unlike most reusable generic collision
prefixes with a header and no body, this actu-
ally gives us two reusable generic collision pre-
archives that are totally valid and manipulatable
with standard tools. Provided you’re careful with
timestamps—either ignoring them in the source files
or recompiling within two seconds—doing the same
operations on both pre-archives will maintain the
equality of hash values of both files, which is nice
and very unusual.

Even better, deleting any archived files beside
the root and the dummy collision block file will re-
vert to the original hash values without any further
modification required! Who would have expected
that standard Zip tools could give you predictable
hash values?

$ md5sum docx*zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx1.zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx2.zip
$ zip -oXll docx1.zip zinsider.py

adding: zinsider.py (deflated 64%)
$ zip -oXll docx2.zip zinsider.py

adding: zinsider.py (deflated 64%)
$ md5sum docx*zip
d12044feee801ad0530a911fa7f18db5 *docx1.zip
d12044feee801ad0530a911fa7f18db5 *docx2.zip
$ zip -d docx1.zip zinsider.py
deleting: zinsider.py
$ zip -d docx2.zip zinsider.py

deleting: zinsider.py
$ md5sum docx*zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx1.zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx2.zip

Supported formats This trick is applicable to
any file format made of a Zip-ed XML with a root
file. It works for .docx, .pptx, and .xlsx from
Office, for the open container format in ePub, and
for other open packaging conventions, such as .3mf
for 3D manufacturing and the XML Paper Specifi-
cation, .xps and .oxps.

Corkami collisions’ zInsider makes it possible
to instantly collide any of these formats, with pre-
computed prefix archives.13

This is easy to extend to any other similar for-
mat, but a new prefix pair must be recomputed for
any new format.

Some formats like Quake’s PK3 aren’t ex-
ploitable: they don’t have a root file to abuse. The
Open Document Format requires their root file to
mention every other file, which isn’t generic. APK,
JAR, and XPI are even worse: they require all the
other files’ hashes!

Gzip
TAR files have no room for any abuse: pure se-
quences of headers with hardcoded size and offsets,
then file contents. No declared lengths, no skip-
pable content. You can use chosen-prefix collisions
on them, but that’s it: nothing generic.

Gzip doesn’t seem to be playing nice with hash
collisions either: any extra data is placed before the
compressed file contents, and appended data typi-
cally triggers a warning and is not taken into account
for parsing anyway. Gzip collisions are possible, but
not in a generic way.

However, while most Gzip files start with the
typical 1F D8 structure—called a member—it’s ac-
tually specified that a Gzip file can contain several of
these members, in which case the data of each will
be decompressed and concatenated. So a member
with no compressed data but with extra data acts
as a comment that can be parasitized, albeit quite
a complex one.

Since the length of the Extra Field is stored on
two bytes in little-endian before the Extra Field it-
self, it’s even exploitable with UniColl!14

12git clone https://github.com/cr-marcstevens/hashclash
13git clone https://github.com/corkami/collisions; find collisions -name zinsider.py
14git clone https://github.com/corkami/collisions; find collisions -name unicoll.md

20

So a generic reusable hash collision for Gzip is ac-
tually possible via a classic sequence of comments.
First one comment to align the rest of the file to col-
lision block boundaries, then one comment whose
length is variable—its encoded value will be over-
lapping with one of the differences in the collision
blocks—and then we start two chains of comments
to toggle one payload or the other, exactly like we
did for JPEG, MD5, or SHA1.

Colliding GZIPs like JPEGs Like JPEG, we
have this limit that extra field can’t be bigger than
64 kb, but recompressing data in chunks of 64 kb is
much easier with Deflate than with JPEG! Since the
decompressed data of all members is concatenated,
we just need to cut the archived data in chunks.

This idea isn’t new. Some formats like BGZIP
(2008) chunk the data in several members and store
an index in the extra field, making it easier to de-
compress some contents separately while maintain-
ing a standard Gunzip-compatible structure. This
is a common source of multi-member Gzip files.

So it gives us reusable hash collisions for any-
thing that relies on Gzip as outer encryption, such
as .tar.gz or SVGZ. As long as the data is decom-
pressed, the structure of the outer archive can be
freely modified.

However, some programs like Inkscape use their
own lightweight implementation of Gzip, which
doesn’t support files made of several members, so
our collision strategy will not work in these excep-
tional cases.

Conclusion
While Zip, XML, GZIP, and TAR seemed very hos-
tile to collisions, combining several tricks made it
possible to get generic reusable hash collisions for
GZip archives (.tar.gz) and Zipped XML files with
a root, such as DOCX files.

The strategies are very different, even if they
both rely on the extensible Extra Field which is sim-
ilar in both formats. For DOCX, it’s a merge of two
documents inside the same Zip, with two versions of
the same root file. For Gzip archives, Extra Fields
are used as comments, and two independent archives
are interleaved via two chains of skip and data.

Other formats aren’t playing that nice: Bzip2
is a pure compressor, bit-based with only bit align-

ment, and no padding and no form of comments.
Other formats such as XZ, AR or Compress (.Z
archives) are just too simple for any exploitation.
RAR applies CRC16 to headers, which does not help
our cause.

Thanks for Yann Droneaud for the TAR.GZ
challenge, and Philippe Lagadec for the DOCX chal-
lenge!

Still using MD5? It might feel useless to still
care about MD5, but as MD5, SHA1, and SHA2
use the same construct, exploits of hash collisions
via file format tricks will be re-usable for other
hash collisions while being cheaper to pull off with
MD5. These techniques would work for SHA1 via
the Shamble attack too, except that it costs $45,000
USD to compute it. And at least, MD5 is still
widespread enough that it has enough targets to at-
tack in practice, unlike MD2 and MD4!

You might be tempted to still use MD5 to des-
ignate a file, but using MD5 will expose you to all
kinds of tricks and confusion that SHA2 or Blake2
don’t.

Fastcolls are very quick to compute and can be
chained, providing one bit of stored data while keep-
ing the MD5 constant.15 They will make it trivial to
watermark a file, and a very short shellcode can eas-
ily detect which version of the file is running, then
adjust its behavior accordingly. Using a stronger al-
gorithm would prevent any possible pranks or con-
fusion, at least for some years until we get better
collisions.

Bonus: ZGIP Zip can use Deflate among other
compression algorithms. On the other hand, Gzip
only uses Deflate.

Both are wrapping Deflate data around differ-
ent structures that are not compatible. By abusing
structures, it’s possible to make ZGIP, a chimera
of Zip/GZIP: a polyglot file sharing the compressed
data.16

By abusing Deflate stored blocks and dummy
members, it’s even possible to partially hide some
data from the other format, even if they belong to
the same stream.

In short, this is just going the extra mile to prove
that GZIP is not a wrapper around Zip, nor Zip is
a wrapper around GZIP.17

15git clone https://github.com/brimstone/fastcoll
16git clone https://github.com/corkami/pocs; find pocs -name zgip
17https://speakerdeck.com/ange/gzip-equals-zip-equals-zlib-equals-deflate

21

Bonus: The craziest colliding file The latest
advanced MD5 manipulation is a very clever ZStan-
dard+Tar hashquine+polyglot by David ‘Retr0id’
Buchanan,18 also known for his beautiful PNG
hashquine.19

It can either be just a Zst file, but also a Tar.zst,
so the Tar header can be toggled on or off, as well
as the complete tar checksum. To be a reusable
hashquine, it’s able to output any MD5 and Tar
checksum while keeping the whole file’s MD5 con-
stant.

The same prefix is reusable in three differ-
ent ways. First it can be a pure ZStandard file
hashquine.

$ md5sum hashquine.zst
720ca7f6842f1a608fcb924f5811ebb9 *hashquine.zst

$ zstd -cd hashquine.zst
The MD5 of hashquine.zst is:
720ca7f6842f1a608fcb924f5811ebb9

Second, it can be a Zstandard(tar) file.

$ md5sum hashquine.tar.zst
703911cf9e409965cebd05392acc1503 *hashquine.tar.zst

$ tar -Oxf hashquine.tar.zst hash.md5
The MD5 of hashquine.tar.zst is:
703911cf9e409965cebd05392acc1503

Finally, it can be a self-checked “auto-manifest”
Tar.zst.

$ md5sum self.tar.zst
f068d54fabb12dbb1b359745a80d78fc *self.tar.zst
~
$ tar -xvf self.tar.zst
x hash.md5
x hello.txt

$ cat hash.md5
f068d54fabb12dbb1b359745a80d78fc *self.tar.zst

ed076287532e86365e841e92bfc50d8c *hello.txt

$ md5sum -c hash.md5
self.tar.zst: OK
hello.txt: OK

The whole prefix uses 653 Unicolls to toggle Zs-
tandard frames and output optional contents after
decompression.

For the optional Tar Header (generic for any
hash.md5 contents), it uses one frame for the con-
stant Tar header start, 8∗11 frames for the hash.md5
file size in octal, one frame for the constant Tar
timestamp 14412572240, 8∗6 frames for any tar
header checksum in octal, and one frame for the rest
of the tar header.

For the optional text prefixes in the file contents,
it uses one frame for the constant prefix of “The MD5
of hashquine.tar.zst is” and other for “The MD5 of
hashquine.zst is” in ASCII. Finally, it uses 32∗16 col-
lisions for all nybble possibilities of an MD5 hash.

Bonus: Wordpad weird files Colliding .docx
files will show the same document with Microsoft
Wordpad. It turns out that Wordpad ignores the
root files entirely, and just locates the document file
via the Content Types files. Really!

As you would expect with such sloppiness, it
doesn’t check if all files in the archive are declared
in the Content Types file, which can turn any Zip
archive into a very weird .docx that is Wordpad-
only with just two XML files. Sadly, this issue being
far from a standard file. Wordpad is confused as it
should be, and we can’t make this issue a Wordpad-
compatible DocX file too. Extract an example from
this PDF’s attachments.20

18git clone https://github.com/corkami/collisions; find collisions -name hashquines
19unzip pocorgtfo22.pdf retr0id.zip; unzip retr0id.zip hashquine_by_retr0id.png
20unzip pocorgtfo22.pdf mini.docx

22

22:06 Mitigations are a reverser’s friend; or, Abusing XFG
by Aleksandar Nikolic

Control flow integrity protections, with its vari-
ous implementations, have been the latest itera-
tion of compiler mitigations for memory corruption
exploits. They hope to make code reuse attacks
more difficult or impossible. Implementation details
vary, but all boil down to restricting possible valid
targets of indirect calls. LLVM’s is called “Con-
trol Flow Integrity,” Grsecurity has “Reuse Attack
Protector” and Microsoft’s is called “Control Flow
Guard” (CFG).

The core idea behind Microsoft’s CFG is ensur-
ing that function pointers can only point to valid
function entry points before being used to perform
a function call. The compiler inserts checks that,
during runtime, inspect every indirect call instruc-
tion and terminate the process if the target isn’t a
valid and known function start.

Putting aside the completeness or effectiveness
of this mitigation, let’s ask whether we can glean
some extra information about the code itself by the
presence of these checks. As Deroko points out in
Control Flow Guard Instrumentation,21 CFG mech-
anisms can serve as a way to hook all indirect calls
in a binary without specifically looking for them in
advance. They can also precisely identify function
entry points, which is not always a trivial task.

With the release of Windows 11, Microsoft is in-
troducing another iteration of control flow integrity
mitigation called “eXtended Flow Guard” or XFG.
In short, it further restricts targets of indirect calls
to not only valid function entry points, but to a
subset of functions that have a particular signature
consisting of return value type, number and types
of parameters and other function properties.

Surely, this added metadata can somehow aid us
in our reverse engineering process. To see how, we’ll
need to understand the implementation details.

What is XFG and how it works

Extended Flow Guard is introduced as a com-
piler extension that can be enabled via /guard:xfg
switch that is available in MS’s C and C++ compil-
ers since at least the 19.27.29112 version of Visual
Studio 2019. It hasn’t seen full support or much
public use until release of Windows 11. Consider an
example:

int test(){
return 0;

}

int (* cfgTest [1])() = {test};

int main(){
cfgTest [0]();

}

This code has a simple function pointer array
cfgTest and makes a call to test using that func-
tion pointer. If compiled with cl /Zi /guard:xfg
simple.c its assembly looks a little odd.

1 sub rsp , 38h
mov eax , 8

3 imul rax , 0
lea rcx , cfgTest

5 mov rax , [rcx+rax]
mov [rsp+38h+var_18], rax

7 mov r10 , 0D30527475E523070h
mov rax , [rsp +38h+var_18]

9 call cs:__guard_xfg_dispatch_icall_fptr
xor eax , eax

11 add rsp , 38h
retn

21unzip pocorgtfo22.pdf cfghook.zip

23

This is some peculiar code. There is no indi-
rect call to function test, rather there’s a call to
__guard_xfg_dispatch_icall_fptr with certain
arguments. The function pointer is actually saved
in rax and an odd-looking constant is moved into
r10 before __guard_xfg_dispatch_icall_fptr is
called. This odd-looking constant is what we will
call an XFG hash. Interestingly, if we take a look
at test function’s prologue on page 25, we’ll see
(almost) the same data.

Long story short, before invoking the target
function, __guard_xfg_dispatch_icall_fptr will
check that the hash in r10 matches the hash located
right before the function. If they don’t match, pro-
cess is terminated.22

This ensures that only legal target functions can
be executed at this particular indirect function call.
The next obvious question is: how is this function
hash derived? That brings us to the core idea be-
hind XFG.

If we think about it, no matter how an indi-
rect call instruction happens to be generated by the
compiler, several things are true for all the possi-
ble, valid, target functions in a valid program. All
possible target functions must have the same num-
ber of arguments, the same calling convention, same
argument types, same return value type and so on.
Even if the compiler doesn’t know of all possible tar-
get functions in advance, it must know all of these
facts about those targets. It can, then, generate a
unique representation of those facts when it encoun-
ters an indirect function call. On the other hand, for
every function that could be a possible target for in-
direct call, the same unique representation can be
calculated and those two can be compared during
runtime.

This unique representation of function prototype
information is what constitutes an XFG hash.

How is an XFG hash generated?

Francisco Falcon over at Quarkslab has already done
the hard work of reverse engineering most of XFG
internals. Their extended writeup provides a num-
ber of examples.23 XFG hash generation happens
in the cl.exe compiler’s frontend c1.dll and re-
volves around gathering function prototype informa-
tion and using the SHA256 hashing algorithm on it
while following certain rules. A list of function prop-

erties that figure into the XFG hash is (as far as C
code is concerned at least) as follows:

• number of arguments

• the types of individual arguments

• type of return value

• whether the function is variadic or not

• the calling convention

When preparing to calculate the hash, each of
these is represented in a specific way. Some are sim-
ple constants, while others have more structure and
are often recursively defined. For example, the num-
ber of arguments is just represented as a 32-bit in-
teger, the calling convention appears to be a 16-bit
constant, and variadic is one byte boolean. Return
value and argument types, on the other hand, are
more complicated.

Those consist of values specifying type qualifiers
(const, volatile), type groups (primitives, point-
ers, structs/unions/enums), and values according to
the type group. Calculating values for primitive
types are the simplest and are just a table lookup:

"void" :0xe,
"char" :0x1,
"signed char" :0x1 ,
"unsigned char" :0x1,
"__int8" :0x1,
"char8_t" :0x1 ,
"__int16" :0x6 ,
"short int" :0x6 ,
"unsigned short int" :0x86 ,
"float" :0x11 ,
"int" :0x7,
"__int32" :0x7 ,
"unsigned int" :0x87 ,
"long int" :0x10 ,
"unsigned long int" :0x8a ,
"double" :0x12 ,
"__int64" :0x8 ,
"long double" :0x12 ,
"long long int" :0x8,
"unsigned long long int" :0x88 ,
"unsigned long long" :0x88 ,

Notice that there are several distinct primitive
types that have the same value. Structs, unions, and
enums are treated the same, and their actual (ver-
batim text) names are included as part of a hash
calculation.

22A great in-depth description from Connor McGar is available as Exploit Development: Between a Rock and a (Xtended
Flow) Guard Place: Examining XFG.

23See How the MSVC Compiler Generates XFG Function Prototype Hashes by Francisco Falcon.

24

.text :0000000140001008 dq 0D30527475E523071h

.text :0000000140001010

.text :0000000140001010 ; ============= S U B R O U T I N E =================================

.text :0000000140001010

.text :0000000140001010

.text :0000000140001010 ; int test (...)

.text :0000000140001010 test proc near ; DATA XREF: .rdata:__guard_fids_table

.text :0000000140001010 ; .data:cfgTest

.text :0000000140001010 xor eax , eax

.text :0000000140001012 retn

.text :0000000140001012 test endp

Figure 4: test Function’s Prologue

Pointers of any kind are the most complicated,
as their value is the hash of the type they point to,
requiring recursive evaluation.

This can look a bit confusing and — although
it’s covered in great detail in the referenced Quark-
slab article — we’ll illustrate the process with the
simplest example. We’ll add a void pointer as an
argument to test from before:

int test(void *arg);

First, there’s only a single argument to this func-
tion, so we will append “\x01\x00\x00\x00” to our
data to be hashed (data0). Second, we need to con-
sider function arguments, calculate their hashes, and
append them to data to be hashed. There is only
one argument and it’s a pointer without qualifiers.
Starting a new hash (data1), we append “\x00” for
qualifiers, “\x03” for type group but then we need to
consider the type of pointer and calculate that hash
separately. Starting yet another hash calculation
(data2), we append “\x00” for qualifiers, “\x01” for
type group and finally “\x0e” for primitive type.
Calculate the SHA256 of data2 and append its first
8 bytes to data1 that completes necessary data for
calculating first argument hash. Hash data1 and
append the first 8 bytes to data0. That concludes
the argument part of the hash. Next is whether
the function is variadic, so we append “\x00” and
what the calling convention is, which defaults to just
“\x01”. The last segment is the return value type
which is an integer primitive, so it’s simply “\x00”
for qualifiers, “\x01” for type group and finally 0x7
for a primitive type. The hash of that is appended
to data0.

Putting that together gives us the following, with
all SHA256 results truncated to the first eight bytes.

sha256("\x01\x00\x00\x00"
+sha256("\x00\x03"+sha256("\x00\x01\x0e"))
+"\x00"+"\x01"+sha256("\x00\x01\x07"))

After some final transformations, the result of
the operation is the “719a5e103606e1b2” value that
appears before the test function in the binary.

An implementation of this algorithm, in Python,
that parses a given C function prototype and gen-
erates its corresponding hash can be found as an
attachment.24

24unzip -p pocorgtfo22.pdf xfg-scripts-args.tgz | tar -xzvf- gen_hash_from_ast.py

25

Using XFG to resolve indirect jumps
Now that we know how XFG works, we can consider
how it can be of use as a reverse engineering aid.

The first, and most obvious idea is that it
can reduce the uncertainty of analyzing indi-
rect calls. Since all indirect calls in an XFG-
protected binary will inevitably be dispatched
through __guard_xfg_dispatch_icall_fptr that
must match callsite’s hash and target function’s
hash, it should be possible to enumerate all possible
targets completely statically (assuming all possible
linked code is known/available for analysis).

Let’s illustrate this with an example. Through-
out the rest of the article, we’ll use ntdll.dll bi-
nary from Windows 11 for illustrations and testing.
If we go to function ‘LdrQueryProcessModuleInfor-
mationEx’ and take a look at the following piece of
assembly:

18000174e 488 d04bf
lea rax , [rdi+rdi *4]

180001752 49 ba7048da56963e ...
mov r10 , 0x85f13e9656da4870

18000175c 498 b44c118
mov rax , qword [r9+rax *8+0 x18]

180001761 ff15a9181900
call qword

[rel __guard_xfg_dispatch_icall_fptr]
{j_sub_1800aa130}

180001767 4c8d0df2b71200
lea r9, [rel data_18012cf60]

While we don’t know without debugging
what possible target this XFG dispatch call
might have, we can see that its hash must
be 0x85f13e9656da4871 (the 1 is added at the
end of the supplied hash by dispatcher). If
we search the binary for functions that have
this XFG hash, we’ll find many results: Ldr-
QueryModuleInfoLocalLoaderUnlock, LdrShut-
downThread, LdrShutdownProcess, RtlDetect-
HeapLeaks, TpTrimPools, RtlCleanUpTEBLang-
Lists, RtlFreeThreadActivationContextStack,
LdrProcessInitializationComplete, RtlFlush-
Heaps, RtlReleasePebLock, RtlAcquirePebLock,
LdrFastFailInLoaderCallout, . . .

Obviously, from the function names, not all of
these make sense as possible targets for this indirect
call because of their differing semantics, but there’s
a good chance that all with Ldr prefix are actual
possible targets.

Why are there so many hash hits that are un-
likely to be real targets? It’s probable that the tar-

get function prototype in this case is very simple,
and matches many other functions. In fact, hash
0x85f13e9656da4871 represents the simplest pos-
sible case of ‘void fname()’. As another example,
the TppCallbackEpilog function has the following
indirect call:

18001766e 488 b8eb8000000
mov rcx , qword [rsi+0xb8]

180017675 4c89aeb8000000
mov qword [rsi+0xb8], r13 {0x0}

18001767c 488 b4108
mov rax , qword [rcx+0x8]

180017680 49 ba70125178f527 ...
mov r10 , 0xa6d127f578511270

18001768a 488 b4008
mov rax , qword [rax+0x8]

18001768e ff157cb91700
call qword

[rel __guard_xfg_dispatch_icall_fptr]
{j_sub_1800aa130}

Looking up the target hash, 0xa6d127f57851-
1271, in the binary yields: TppSimplepFree,
TppWorkpFree, TppAlpcpCallbackEpilog, Tpp-
JobpCallbackEpilog, TppFreeWait, TppTimer-
pFree, TppIopFree, TppAlpcpFree, TppJobp-
Free, TppWorkCancelPendingCallbacks, TppIop-
CancelPendingCallbacks.

All of these look like possible real targets given
their context.

So while not completely precise, this simple
static analysis that relies on XFG hashes definitely
sheds some light on indirect calls that might other-
wise remain completely unresolved.

Attached is a Binary Ninja plugin that annotates
indirect calls with information gained by XFG anal-
ysis.25

25unzip -p pocorgtfo22.pdf xfg-scripts-args.tgz | tar -xzvf- xfg_analyzer.py

26

Brute forcing XFG hashes for function
prototype recovery
Another, more involved, idea stems from the fact
that XFG hashes aren’t random and actually en-
code function prototypes. Surely, there would be a
way to recover at least some of that information and
make use of it.

While it is not possible to reverse the hash back
to function prototype directly, it is perfectly feasi-
ble to precompute a lookup table for all possible
function prototypes (up to certain number of argu-
ments). If we ignore structs, unions and enums for
a second, there are only a fairly small number of
primitive types. In fact, if we remove the duplicates,
there’s a total of only 12 primitive types (with dis-
tinct values as far as XFG generation is concerned).
Adding in type qualifiers (const, volatile) and
pointers, a bit of simple combinatorics tells us that
total number of all possible function prototypes is
roughly (12 ∗ 3)num_args + 1 .

This gets big very fast as we increase the number
of arguments, but the whole list is precomputed in
minutes for functions up to three arguments.

import sys
2 import itertools

from jinja2 import Template
4 types = ["void", "char", "short int",

"unsigned short int", "float",
6 "int", "unsigned int", "long int",

"unsigned long int", "double",
8 "long long int", "unsigned long long"]

add all types as pointers
10 types += [x + " *" for x in types]

and as consts
12 types += ["const " + x for x in types]

and as volatiles
14 types += ["volatile " + x for x in types]

16 j2_template = Template("""
{{ ret_type }} fname({%- for param_type in

param_types -%} {{ param_type }} arg{{loop
.index }}{{ "," if not loop.last }} {%-
endfor -%});

18 """)

20 max_func_params = 3
f = open(sys.argv[1], "w")

22 i = 0
for ret_type in types:

24 for pn in range(4, max_func_params +1):
for c in itertools.product(types ,

26 repeat=pn):
f.write(j2_template.render ({"ret_type"

: ret_type , "param_types": c}))
28 i+=1

f.close ()

27

This code uses a jinja2 template to generate an
exhaustive list of all possible function prototypes
starting with given primitive types. These generated
prototypes can then be fed into the hash generation
algorithm to compile a lookup table.

So, does this work? We’ll test this on ntdll.dll
again. This particular version of the DLL has a total
of 1564 functions that have an XFG hash associated
with them. Out of those 1564, there are a total of
995 unique XFG hashes. After lookups, this sim-
ple matching has identified function prototypes for
131 unique hashes, corresponding to a total of 294
functions!

By simply precomputing all possible function
prototypes up to three parameters (using nothing
target specific, only primitive types) we were able
to recover precise function prototypes for about 13%
of unique hashes in ntdll.dll. Figure 5 has some
examples.

The proof-of-concept works, but there are a cou-
ple of reasons why we didn’t get a higher hit rate.
First and most obvious is that many functions sim-
ply have more than three arguments, but even bigger
factor is the fact that ntdll.dll code heavily relies
on use of structures, enums, and structure pointers.
Since hashes for struct, union, and enum types in-
clude their names directly, straight up brute forcing
isn’t practical, but seeding certain (domain specific)
names would greatly increase the hit rate. XFG
hash calculation implementation supports structs in
function prototypes, and since structs, enums, and
unions are treated the same, all we need to do to
add struct names is to expand the list of primitive
types. Adding struct in_addr to list of primitive
types leads to following result:

7139 d252a1b76de8 char *func(
const struct in_addr *arg1 , char *s)

This calculated hash matches the XFG hash for
RtlIpv4AddressToStringA. By adding target spe-
cific, commonly used, structs to prototype gener-
ation we can greatly increase the number of found
hashes at the expense of a larger lookup table. Since
structures and other type information are sometimes
publicly available even if function prototypes are
not, this allows for very precise function prototype
recovery.

How do we know that these results are actu-
ally correct? Let’s take another look at an example
where we do know the function prototype. Function

‘RtlSetUserValueHeap’ has four arguments. Binary
Ninja guesses its prototype to be:

void* const* RtlSetUserValueHeap(
int64_t arg1 , int32_t arg2 ,
int64_t arg3 , int64_t arg4);

Similarly, IDA guesses:

char __fastcall RtlSetUserValueHeap(
__int64 a1 , unsigned int a2,
__int64 a3 , __int64 a4)

This function’s XFG hash is 0xc76c3600585a-
f171 and a lookup reveals the following function
prototype:

char RtLSetUserValueHeap(
void *arg1 ,unsigned long int arg2 ,
void *arg3 , void *arg4);

Notice how both Binary Ninja and IDA can-
not know that some of the arguments are point-
ers. This simple fact adds a lot of information that
greatly aids further function analysis and decompi-
lation. And what about correctness? While source
for ‘RtLSetUserValueHeap’ isn’t available, it is reim-
plemented in ReactOS where its function prototype
is:

BOOLEAN
NTAPI
RtlSetUserValueHeap(

In PVOID HeapHandle ,
In ULONG Flags ,
In PVOID BaseAddress ,
In PVOID UserValue

);

While the prototype gathered from XFG analysis
lacks some extra annotations, the types themselves
match precisely!

In Conclusion
Even though mitigations like XFG pose a real chal-
lenge when it comes to exploitation, it sometimes
pays off to take a step back and consider the possible
side effects that can be handy in other ways. We’ve
shown that a very simple lookup table can recover
a treasure trove of information that can be helpful
when reverse engineering an XFG-protected binary.
As XFG adoption spreads to code other than Mi-
crosoft’s, this can definitely lead to some interesting
discoveries.

28

char RtlGetSecurityDescriptorRMControl(void *arg1 , char *arg2);
unsigned long int RtlNumberOfSetBitsUlongPtr(unsigned long long int arg1);
char RtlEqualWnfChangeStamps(unsigned long int arg1 , unsigned long int arg2);
unsigned long int RtlSetProxiedProcessId(unsigned long int arg1);
void RtlWnfDllUnloadCallback(void *arg1);
void *memchr(const void *arg1 , int arg2 , unsigned long long arg3);
char *strchr(const char *arg1 , int arg2);
unsigned long long strcspn(const char *arg1 , const char *arg2);
unsigned long long strnlen(const char *arg1 , unsigned long long arg2);
char *strpbrk(const char *arg1 , const char *arg2);
char *strrchr(const char *arg1 , int arg2);
unsigned long long strspn(const char *arg1 , const char *arg2);
char *strstr(const char *arg1 , const char *arg2);
int tolower(int arg1);
int WinSqmCommonDatapointSetDWORD64(

unsigned long int arg1 , unsigned long long arg2 , unsigned long int arg3);
int WinSqmCommonDatapointSetString(

unsigned long int arg1 , const unsigned short int *arg2 , unsigned long int arg3);
int WinSqmGetInstrumentationProperty(

const unsigned short int *arg1 , const unsigned short int *arg2 ,
unsigned short int *arg3 , unsigned long int *arg4);

int WinSqmIsOptedInEx(unsigned long int arg1);
void AlpcGetCompletionListLastMessageInformation(

void *arg1 , unsigned long int *arg2 , unsigned long int *arg3);
unsigned long int DbgPrompt(const char *arg1 , char *arg2 , unsigned long int arg3);
char RtlQueryProcessPlaceholderCompatibilityMode ();
char RtlSetProcessPlaceholderCompatibilityMode(char arg1);
char RtlIsNonEmptyDirectoryReparsePointAllowed(unsigned long int arg1);
char RtlIsZeroMemory(void *arg1 , unsigned long long arg2);
unsigned short int RtlLogStackBackTrace ();
void *RtlLogStackTrace(unsigned long int arg1);
void RtlReleaseStackTrace(void *arg1);

Figure 5: Example Prototypes from ntdll.dll

29

22:07 Timecryption, OTP with Near-polyglots
by Ange Albertini and Stefan Kölbl

Our foundation for this is the CounTeR (CTR)
block cipher mode, which effectively turns a block
cipher into a stream cipher. From a Nonce and a
Key, it generates a keystream. The plaintext is then
xored with this keystream to obtain the ciphertext.
This mode acts as a one-time pad. Just an xor
against a keystream, so encryption and decryption
are the same operation. The cipher’s decryption op-
eration itself isn’t used. If we decrypt with a differ-
ent key, we end up xoring with a different keystream.

What about crafting an ambiguous ciphertext?
We define this as a ciphertext that gives meaningful
plaintexts for different keystreams!

To do this, recall that we can freely modify the
ciphertext: the keystream is set by (Nonce, Key),
and plaintext and ciphertext aren’t involved, which
means that for a given keystream if we change ci-
phertext bytes, we set the plaintext bytes, as it’s
simply an xor against a keystream.

So, we can directly create such a ciphertext with
a binary polyglot whose interpretation varies by the
eky. We just independently encrypt the different
ranges of the file with the different keys, then com-
bine the two ciphertexts at the right offsets.

Making Decryption Relative to Time

But we run into a key question: how do we have an
uncooperative system decrypt to two different re-
sults? We postulate that in real-world applications,
specifically those having key rotation, we can do this
leveraging time.

If we know the key rotation scheme used by a sys-
tem, we can craft a file that, when encrypted with
the current key, might be authentically decrypted
later with a different key added to the key ring.
(Typically, newest keys are tried first, and decrypted
plaintext is returned as soon as the decryption is
authenticated.) So the file will be transparently de-
crypted to something else, something that you de-
cided in advance:

Timecryption combines what you want now with
what you want later. You control both. When im-
plemented against a known key rotation scheme, it’s
transparent and works as intended.

Near-Polyglots

Typically, each ciphertext byte belongs to one pay-
load and one only. But if we leverage two keys from
the key rotation scheme—K1 for now and K2 for
later—we can bruteforce a nonce that will get some
bytes decrypted to two different sets of values.

This means that we can make two formats that
will coexist in the same file starting at offset zero,
such as PDF/PE or JPG/PNG, or the same format
twice, where JPG/JPG would be a near ambiguous
file.

30

There are two ways we identify to handle these
pairs of files with the same format. One way to
do this is with a technique such as causing a differ-
ent comment length, a bit like a hash collision for
JPG/JPG. In this case, it’s a file with one header
and two contents. Another way is to do so for
formats that work from any offset such as HTM-
L/HTML. In this case, it’s two contents coexisting
in the same file.

Note that the smaller number of bytes in the
overlap of the two formats, the faster the nonce
bruteforce will be! The overlap only needs to be
as long as is required given the specific formats. For
example, ICC requires any parasite to start at off-
set 0x132, which is impractical to bruteforce. This
technique can be exploited quickly with formats like
JPG since it has a very small minimal offset of 4.

The Mitra repository has all the tooling for CTR,
OFB and GCM modes with precomputed exam-
ples.26

With Authenticated Encryption
In the case of CTR encryption, it’s possible to
change keys because the encryption is unauthenti-
cated, a known security risk. For this reason, the
Galois/Counter Mode (GCM) was created, which is
just CTR with authentication via an extra authenti-
cation data and tag. However, it’s possible to forge
one of the blocks such that decryption will be valid
for several keys, so GCM is vulnerable too.

Secondly, more complex modes are exploitable
too, such as OCB3 and GCM-SIV.27 These cipher
modes work at the block level and not at the byte
level, so you need to align payloads to the block
boundary. They also require more than one block
to compute the authentication collision, but that’s
a small overhead.28

It’s even possible to set an arbitrary content in
the authentication tag!

Authenticated encryption isn’t enough if the key
isn’t committed to the encryption. It’s possible
to craft ciphertexts that authentically decrypt with
different keys, which is something that multiple
schemes were independently found vulnerable to.29

Conclusion
Near-polyglots are the starting point for funky
polyglot-like with cryptography, whether for Ange-
Cryption (ECB, CBC, CFB and OFB) or Timecryp-
tion (CTR, OFB, GCM, OCB3 and GCM-SIV).

Mixing near-polyglots (CTR, OFB) and forging
contents to get the same authentication tag is pos-
sible for GCM, OCB3 and GCM-SIV mode.30

Mitra’s handling of near-polyglots makes it very
easy to merge dozens of different file formats, and
the key commitments tools forge the tags. Using
these techniques and tools, exploiting authenticated
collisions only requires a few command line invoca-
tions!

26git clone https://github.com/corkami/mitra
27git clone https://github.com/kste/keycommitment
28Note that GCM-SIV’s computation cost is relative to payload size, so try it with smaller files first!
29unzip pocorgtfo22.pdf project_MircoStauble.pdf % “Actually Good Encryption? Confusing Users by Changing Nonces”

by Mirco Stäuble
30unzip pocorgtfo22.pdf withoutcommit.pdf

31

22:08 The Электроника MK-51 is a Casio fx-2500
by Travis Goodspeed

Howdy y’all,
In the USSR, there was a calculator called the

Электроника MK-51.31 It looks an awful lot like
a calculator from Japan, the Casio fx-2500. In this
short article, I’ll demonstrate that in addition to
looking similar, the MK-51 is in fact a clone of the
fx-2500, and that the Soviets went so far as to coun-
terfeit the NEC microcontroller inside the fx-2500
with just minor alterations. Every last bit of the
program ROMs are identical.

Let’s begin with a little background. Introduced
in 1978, the fx-2500 is a small scientific calculator
that’s held in a plastic wallet with its instruction
manuals. The MK-51 joined it in 1982; manufac-
tured until 2000, it also features a plastic wallet
and instruction manuals. They both have an 8-digit
LCD. The Casio is 121x67x11 mm, while the Elek-
tronika is 130x71x8 mm. The keyboard layouts are
a little different, some keys in different positions.

As I suffer from a disease late at night that in-
volves alcohol and Ebay, it wasn’t long before a few
units of the Elektronika arrived from Ukraine. The
Casio was surprisingly a little harder to find, but I
found that one, too.

I first tore down the MK-51. The zebra strip on
this unit’s LCD had long since turned to stone, but
otherwise it seemed in decent condition for its age.
The calculator is built around a single microcon-
troller in an epoxy blob package that rides within the
plane of the PCB, a trick that I’ve also seen for re-
ducing thickness on the HP-28 calculator. The blob
in my calculator had no part number, both other
sources online say that this chip is the К757ИП1-2.
In X-ray, you can clearly see the hole cut out of the
CPU to allow the CPU to fit with less thickness.

Going a little deeper, I desoldered the microcon-
troller, cut its legs off, and dropped it in a hot bath
of HNO3. The epoxy blob was torn off by nitric acid
just fine, but it softened first in a way that Western
QFP and DIP packages never do. I wonder what
it’s made of, but I’ll leave that to professional re-
verse engineers of Soviet plastics rather than guess.

A full die photograph is shown in Figure 7.
Nearly a third of the die is consumed by a diffusion
ROM, and all pins are numbered, which was quite
nice of the designers and convenient for reverse en-
gineers.

Bits in a diffusion ROM are rarely surface visible,
so I had to delayer this chip in dilute hydrofluoric
acid. Ten minutes in hot Rust-Go did the job on the
very first try. Bit rows are found in groups of four,
with plenty of spacing between groups, but Mask-
ROMTool – presented page 5 – was able to make
short work of recognizing them.

One important trick with diffusion ROMs is that
after delayering, they sometimes have no unique
color, just a border line. So in addition to mark-
ing the center of each bit, I had to instruct my de-
coder to sample a wide stretch of pixels, recording
the darkest color in each channel. This made the
bits pop out, just a few dozen decoding errors.

The ROM itself is 352 columns wide and 64 rows
tall, holding 22,528 bits or a little more than two
kilobytes in total. While some very clever souls
have decoded ROMs without knowing the architec-
ture and instruction set, I wasn’t very hopeful of
doing the same. Who the hell knows what 4-bit mi-
crocontrollers were Ivan’s favorite in the eighties?

So by this stage, I had die photographs and an
export of the physically ordered ROM bits, but not

31Elektronika MK-51, if you don’t follow Cyrillic.

32

33

Figure 6: NEC D897G Die from the Casio fx-2500, Delayered

34

Figure 7: К757ИП1-2 from an Электроника MK-51, Top Metal

35

Figure 8: Mask Labels from Электроника MK-51 (top) and NEC D897G (bottom)

36

yet a decoding into logical bytes or error correction
of the marked bits. To get further, our story leaves
the Soviet Union and moves next door, to Japan.

My sample of the Casio fx-2500 arrived a week
after the Elektronika. From the very first glance,
it’s clear that the exterior casing of one was mod-
eled after the other. Minor differences in size and
plastic quality were visible, and some of the button
rows are in a different order.

Inside the case, the Casio also uses a single mi-
crocontroller, but this is attached to the PCB as a
normal QFP package, rather than sitting in a cutout
of the PCB. It has a visible part number of NEC
D897G.

I decapped and then delayered it in the same
way as I did the Soviet chip, then delayered it to
get Figure 6. Both chips have pin numbers around
the perimeter; both chips have layer labels between
pins 49 and 50; and, both chips have a diffusion
ROM that’s roughly a third of the surface area.

The mask ROM of the NEC chip also contains
groups of four rows, and it also contains exactly
22,528 bits in exactly 64 rows and 352 columns.
The bits are identical, and I was able to correct the
few dozen bit errors that I made in the Elektronika
extraction by having MaskROMTool flag all differ-
ences with the Casio as errors. This shows that not
only are these two calculators running the same ar-
chitecture, but they have exactly the same firmware.

Unlike the Электроника calculator, which lacks
a part number on the die, the NEC chip is labeled
with D897G. This part number isn’t in my databook
collection, but the naming convention fits members
of NEC’s µCOM43 family that appeared in 1977,
just a year before the calculator.

I grabbed Computer Gin and Fabulous Fred,
µCOM43 chips which had been decoded by Sean
Riddle. Between those and my handy NEC data-
book, I found that Fabulous Fred begins with 8f,
91. 8f is an LDZ instruction, loading 0f into the
data pointer. 91 is an LI instruction, loading 01
into the accumulator. Computer Gin begins with
15, 3e. 15 is ADC instruction, and add with carry.
3e is an XI instruction,

Plugging these instruction pairs into MaskRom-
Tool’s byte solver, it recommends a solution similar
to the Riddle’s ROMs.32 With that decoding, the
ROM begins to look something like µCOM43 ma-
chine language!

0:00: db JCP 0x1B Call a function
0:01: 15 5d LDI 0x5D Load the DP
0:03: 63 RPB 3 Clear I/O pins
0:04: 3d XMI 1
0:05: 66 REB 2
0:06: 28 X Move DP to A
0:07: 69 RMB 1 Clear bit of RAM
0:08: 01 DI Disable Ints

Today I’ve not only shown that the Электро-
ника MK-51 and the Casio fx-2500 not only look
and behave similarly, but also that the MK-51 has a
clone of the NEC microcontroller from the fx-2500,
that the firmware is identical between the two calcu-
lators, and that the firmware is similar if not identi-
cal to that of the NEC µCOM43 architecture. With
time this ROM dump might be built into an emu-
lator, though we will have to figure out after which
calculator to name the MAME module!

32gatorom bits.txt -o rom.bin --decode-cols-downl-swap -i -r 90

37

38

22:09 A Tourist’s Guide to Reversing Renesas M16C
and the R8C, too!

by Christopher Hewitt and Niccolò Izzo

Ehilà, vicino!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the architecture of smaller devices as quickly as pos-
sible, with a minimum of fuss and formality.

Those of you who have already worked with Re-
nesas M16C or similar architectures might find it to
be a useful refresher, while those of you new to the
architecture will find that it really isn’t as strange as
you’ve been led to believe. If you’ve already reverse
engineered binaries for any platform, even C-SKY
CK803, you’ll soon feel right at home.

We’ve written this guide using a device in the
R8C/Tiny series for specific examples, but with mi-
nor differences it applies well enough to the R8C
and M16C families as a whole. For larger Rene-
sas parts, such as those used in engine control units
and portable amateur radios, you might be better
served by a different introduction. Either way, be
sure to keep reading for a case study on applying
power analysis and fault injection techniques to suc-
cessfully recover firmware from an R8C/Tiny target
with protected flash memory.

Architecture
Von Neumann
16-bit words

Registers
R0-R3: Data Registers (R0 and R1 as split 8-
bit halves.)
A0-A1: Address Registers (A0 and A1 as com-
bined 32-bit A1A0 register.)
FB: Frame Base
PC: 20-bit Program Counter
INTB: Interrupt Table (available as split 4-bit
INTBH and 16-bit INTBL registers.)
USP: 16-bit User Stack Pointer
ISP: 16-bit Interrupt Stack Pointer
SB: 16-bit Static Base
FLG: 11-bit Flag register

Instructions
89 instructions, where instruction encoding is
variable width
Opcode is 8-bit for the most frequently used
Opcode is 16-bit for the others

Instruction Set Basics

The first generation of R8C devices appeared in 2003
and were marketed as a cost-reduced alternative to
Mitsubishi’s M16C family, following the formation
of Renesas as a joint venture between the semicon-
ductor operations of Mitsubishi and Hitachi. The
R8C family features the same 16-bit CISC architec-
ture as M16C with binary level compatibility and
the internal data bus reduced to 8 bits. These fam-
ilies are also compatible at the assembly level with
the M32C family.

The instruction set is composed of 89 discrete
instructions with many common instructions only
requiring a single clock cycle. Instruction encoding
has variable length and the opcode (8-bit for the
most frequently used and 16-bit for the others) is
followed by source and destination operands speci-
fied through different addressing modes.

Instruction mnemonics can be suffixed to prior-
itize one of the following four possible instruction
formats with the assembler choosing an optimal for-
mat if one is not explicitly specified.

Generic (:G) Op-code (2 bytes), source (0-3
bytes), destination (0-3 bytes)

Quick (:Q) Op-code with immediate data (2
bytes), destination (0-2 bytes)

Short (:S) Op-code (1 byte), source (0-2 bytes),
destination (0-2 bytes)

Zero (:Z) Op-code (1 byte), destination (0-2
bytes)

There are also numerous addressing modes cat-
egorized across three different types.

General Instruction Addressing Immediate,
register direct, absolute, address register indi-
rect, address register relative, SB relative, FB
relative, SP relative

Special Instruction Addressing 20-bit abso-
lute, address register relative with 20-bit dis-
placement, 32-bit address register indirect,
32-bit register direct, control register (PC,
INTB, USP, ISP, FLG) direct, PC relative

39

Bit Instruction Addressing Register direct, ab-
solute, address register indirect, address reg-
ister relative, SB relative, FB relative, FLG
direct

Registers and Calling Convention

Be aware of different calling conventions depending
on the compiler and options used. For example, the
IAR C and C++ compiler for R8C and M16C sup-
ports a “normal” calling convention and a “simple”
one. The normal (and default) calling convention is
optimized to use registers as much as possible (with
A0, R0, and R2 used as scratch registers), then de-
fers to the stack for passing parameters. The simple
calling convention, however, only passes the first pa-
rameter through R0L, R0, or R2R0 (depending on
size), then defers to the stack for remaining parame-
ters. R0 and R2R0 are also used for returning values
from a function.

There are also subtle differences between Rene-
sas’ own compilers such as the NC30 compiler used
for the M16C and R8C families, and the NC308 com-
piler used for M32C and certain M16C family parts.
For example, NC30 preserves registers during func-
tion calls on the caller side, while NC308 does so on
the called side.33

Regardless of the compiler used, stack frame ma-
nipulation is evident by the presence of ENTER and
EXITD instructions to build and deallocate stack
frames respectively.

Memory Map

Note that different documents have conflicts. We
used a Chinese language datasheet for our figure on
page 41 where things differed.34

Also note that this article’s PoC dumps actual
code from a region that isn’t supposed to be valid
for this specific part number, but is valid for differ-
ent catalog part numbers (likely sharing the same
die).
Editors Note: We have included a die photo on
page 45 taken from processing a R5F21194, for any-
one who wishes to perform future comparisons to
other catalog part numbers.

Code Protection

The Renesas R8C/Tiny series supports a couple
of different mechanisms for flash protection. Se-
rial programmer commands to access the flash, in-
cluding erasing, are completely ignored if a cus-
tom 7-byte ID code was interleaved with entries
in the interrupt vector table at offsets 0x0FFDF,
0x0FFE3, 0x0FFEB, 0x0FFEF, 0x0FFF3, 0x0FFF7,
and 0x0FFFB. An ID code consisting of all-ones (such
as when flash cells are unprogrammed from the fac-
tory) is automatically unlocked by the boot ROM,
while any other value requires manual unlocking
with a successful ID code comparison to re-enable
flash manipulation. Parallel programmer commands
to access the flash are ignored through configura-
tion of the Option Function Select (OFS) register
located at offset 0x0FFFF by setting ROMCP1=0 and
ROMCR=1.35

Fixed Interrupt Vector Table (Flash)
0x0FFDC Undefined Instruction ID1 (0x0FFDF)
0x0FFE0 Overflow ID2 (0x0FFE3)
0x0FFE4 BRK Instruction
0x0FFE8 Address Match ID3 (0x0FFEB)
0x0FFEC Single Step ID4 (0x0FFEF)
0x0FFF0 Osc. stop, watchdog, VM2 ID5 (0x0FFF3)
0x0FFF4 Address Break ID6 (0x0FFF7)
0x0FFF8 Reserved ID7 (0x0FFFB)
0x0FFFC Reset OFS (0x0FFFF)

Finding a Target

Renesas is one of the leading suppliers of microcon-
trollers in the world but it’s not very common to
see their microcontrollers used by electronics hobby-
ists in western countries. Mass-produced commer-
cial designs spanning from inexpensive toys to fault-
tolerant automotive engine control units are much
more likely to include Renesas parts.36

One low-cost and readily accessible product con-
taining an R8C/Tiny microcontroller is the SA868
radio module with integrated power amplifier. Lim-
itations in the module’s factory firmware make it
an attractive target for modifications, but this first
requires unlocking access to the protected contents.

33The documentation is confusing here, for further see
unzip pocorgtfo22.pdf m32c90-compiler.pdf Page M-70 and unzip pocorgtfo22.pdf m32-compiler.pdf Page 59.

34unzip pocorgtfo22.pdf r5r0c00cn.pdf
35See unzip pocorgtfo22.pdf r8c-hardware.pdf section “ROM Code Protect Function” (Page 250)
36See Bypassing the Renesas RH850/P1M-E read protection using fault injection by Willem Melching.

40

SFR

0x00000

0x002FF

Reserved

0x00400

Internal RAM

*0x004FF

Reserved

0x02400

Internal ROM

(data)

0x02BFF

Reserved

0x0E000

Internal ROM

(program)

*0x0FFFF

Expanded Area

0xFFFFF

* Other catalog part numbers use different ranges for some sections.

0x0FFDC

0x0FFFF

Undefined instruction ID1 (0x0FFDF)

Overflow ID2 (0x0FFE3)

BRK instruction

Address match ID3 (0x0FFEB)

Single step ID4 (0x0FFEF)

Oscillation stop, watchdog, voltage monitor 2 ID5 (0x0FFF3)

Address break ID6 (0x0FFF7)

Reserved ID7 (0x0FFFB)

Reset OFS (0x0FFFF)

Fixed Vector Table

Figure 9: Memory Map Summary

Under the SA868 v1.1’s metal shield sits a Re-
nesas R5R0C002SN, an R8C/1B group compati-
ble part that was only available to customers in
Asia. A close approximation with a publicly avail-
able English language datasheet is the Renesas
R5F211B2SP. The role of this microcontroller in
the module is to expose a Hayes-style command
set interface to control an Auctus AT1846S RF
transceiver, which is the same part at the core of
many low-cost amateur handheld radios including
the ubiquitous UV-5R, GD-77, and MD-UV380.

Without getting too deep into radio theory, the
SA868 module has a lot more potential than it was

designed for. While the module is strictly marketed
for use in analog FM applications, the transceiver
component is used in more sophisticated digital ra-
dios using 4-FSK modulation. Once the microcon-
troller’s protected flash can be unlocked, it is possi-
ble to dump and patch the firmware or even replace
it with a custom purpose-built one to support more
useful and interesting digital voice and data proto-
cols.37

37See Delorie 2009 page 5, unzip pocorgtfo22.pdf renesasflash.pdf

41

Extracting the Application

A previously published attack for a microcontroller
in the M16C family described a successful tim-
ing attack against the boot ROM.38 The authors
demonstrated a measurable time delta between the
last cycle of the serial programming clock (SCK)
and an output pin (BUSY) asserted while ser-
vicing programmer commands that could be used
to iteratively determine individual bytes of an ID
code. This approach might have been viable for the
R5R0C002SN since the R8C family is a close relative
of the M16C family, if not for the lack of an equiv-
alent pin indicating busy state. It is, however, still
possible to demonstrate whether or not the timing
attack is portable to this target by extracting the
same information through power analysis of the ID
code verification process.

A relationship to power consumption can be
measured by removing the microcontroller from cir-
cuit and inserting a low value shunt resistor in-
line with the power supply. Experimentation with
added capacitance or changing shunt resistor posi-
tion helps establish which conditions provide the
cleanest measurements. During any unsuccessful
unlock attempt, voltage measurements at the sup-
ply pin expose seven evenly spaced segments, corre-
sponding to each byte of the ID code. This obser-
vation suggests that the R5R0C002SN’s boot ROM
executes comparisons in constant time and is not
vulnerable to the same timing attack. Brute force
attempts are also discouraged by silently ignoring
unlock requests after a few unsuccessful attempts.
On a target with a known ID code, leakage from
successful unlock attempts suggests that valid com-
parisons are performed twice, possibly to mitigate
against power glitches.

Readers with experience in side channel analysis
might be tempted to calculate Pearson correlation
coefficients in order to match ID code attempts with

power trace data in hopes of leaking bits or bytes
from the real ID code, but the approach seemingly
does not work here. Whether the result of high clock
jitter, inadequate ADC resolution, or just bad luck,
no apparent correlation between ID code attempts
and resulting power trace can easily be identified.

Fault injection is another tool at our disposal for
extracting protected flash memory contents. Long
pioneered by satellite television enthusiasts explor-
ing conditional-access modules, fault injection at-
tacks traditionally manipulate clocks or supply volt-
ages as a mechanism for introducing unintentional
behavior to a system, such as causing instructions to
be skipped or register contents to be modified. De-
vices like the ChipWhisperer-Lite have made these
kinds of practical attacks significantly more ap-
proachable for hobbyists, but don’t disregard the
price point and flexibility of a simple microcontroller
combined with a fast switching MOSFET to mo-
mentarily bridge a supply voltage to ground poten-
tial.

Each microcontroller in the R8C/Tiny family
has an integrated ring oscillator running at roughly
8 MHz further divided by 32 for use as the system
clock during boot ROM execution. This clock is not
exposed externally, so clock glitching is not the most
convenient approach. The high degree of jitter from
this internal clock combined with the double check of
the ID code observed in power analysis means that
landing a voltage glitch twice during an unlock at-
tempt, with the correct timing, might be excessively
difficult. But let’s consider for a moment if a suc-
cessful ID code verification is even necessary prior
to accessing flash programming commands. Maybe
it’s really only a formality intended for diligent en-
gineers who rigidly follow the rules outlined in the
hardware manual.

It is clear from the location of the fixed inter-
rupt vector table that the ID code is stored on the
last page of flash and clear from the programming
guide that there is a flash page read command in
the boot ROM. It’s not unreasonable to at least try

38See Hacking Toshiba Laptops by Serge Bazanski and MichałKowalczyk.

42

repeatedly reading the final page of flash without
any prior ID code verification while simultaneously
sweeping glitches over the microcontroller’s power
supply with varied time offsets. The programming
interface’s serial transmit pin can even be used as
a trigger to anchor glitches around the page read
commands.

Some experimentation is required to find glitch
pulse lengths and time offsets that don’t stall the
microcontroller yet still influence boot ROM be-
havior. Keep in mind that variations in capaci-

tance and even temperature can easily impact re-
sults and repeatability. Since thousands of glitch
attempts might be required for a single success, it’s
best to keep each attempt as short as possible: Skip
unnecessary communication steps by directly using
the boot ROM’s flash programming protocol and
only perform hard resets when the microcontroller is
completely stalled and not responding. With a little
luck, our trusty microcontroller confidently returns
a full page of flash data, rather than nothing.39

Glitching an unknown programmed R5R0C002SN sample from AliExpress

[*] bootrom: VER .1.20
[*] injecting faults ...
<omitted >
[?] dumped page - width: 37.890625 offset: -44.921875 ext_offset: 5420
0000 FF00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF10 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF20 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF30 ff ff ff ff 53 fb 00 00 53 fb 00 00 53 fb 00 00S...S...S...
0000 FF40 53 fb 00 00 53 fb 00 00 b4 fa 00 00 53 fb 00 00 S...S.......S...
0000 FF50 53 fb 00 00 53 fb 00 00 aa f8 00 00 53 fb 00 00 S...S.......S...
0000 FF60 53 fb 00 00 53 fb 00 00 53 fb 00 00 53 fb 00 00 S...S...S...S...
0000 FF70 53 fb 00 00 1b fb 00 00 ff ff ff ff ff ff ff ff S...............
0000 FF80 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF90 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFA0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFB0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFC0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFD0 ff ff ff ff ff ff ff ff ff ff ff ff 53 fb 00 4eS..N
0000 FFE0 53 fb 00 6a 53 fb 00 00 53 fb 00 46 53 fb 00 74 S..jS...S..FS..t
0000 FFF0 50 fb 00 53 53 fb 00 59 53 fb 00 54 49 e0 00 f7 P..SS..YS..TI...
[!] valid idcode - 4e6a4674535954
[*] dumping entire flash ...
[*] block 0 (0 x0e000 - 0x0ffff):
0000 E000 7b 60 5e 7c 65 3d 3f 70 7f 7d 77 2f 1b 6e 1f 17 {‘^|e=?p.}w/.n..
0000 E010 f4 85 0f f4 92 0f f4 ba 0f f4 d5 0f f4 e1 0f f4
0000 E020 02 10 f4 ec 0f f4 0f 10 f4 2a 10 f4 56 10 f4 43*..V..C
<omitted >
[*] block 1 (0 x0c000 - 0x0dfff):
0000 C000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 C010 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 C020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] block a (0 x02400 - 0x027ff):
00002400 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002410 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002420 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] block b (0 x02800 - 0x02bff):
00002800 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002810 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002820 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] done

39See the Jupyter notebook unzip pocorgtfo22.pdf r8c-glitch.ipynb

43

▄▄▄▀▀▀▓▓▄ R8C/Tiny BootROM ID Code Bypass - Greetz to ShmooCon Møøse Crew
 ▓▓▓▌ ▄▄▄▄▄▄▄ ▄▄ ▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄▄
 ▄▓▓▌ ▓▓▌ ▐▓▓▓▓ ▐▓ ▓▓▌ ▓▓▓░ ▓▌█▓▄ ▓▓▓░
 ▓▓▌ ▓▓▌ ▓▓▌▄▄▄▄▄ ▐▓ ▀▓▓▄ ▐▓ ▓▓▌▄▄▄▄▄ ▀▓▓▓▓▄ ▓▌ ▓▓▄ ▀▓▓▓▓▄
 ▓▓▌ ▓▓▄ ▓▓▌ ▐▓ ▓▓▌▐▓ ▓▓▌ ▀▀▓▓▓▄ ▓█ ▓▓▄ ▀▀▓▓▓▄
 ▓▓▌ ▀▓▄ ▀▓▓▄▄▄▄▄ ▐▓ ▀▓▓▓ ▀▓▓▄▄▄▄▄ ▄▄▄▄▄▄▄▓▓▀ ▓█ ▄▄▓▓▓▄▄▄▄▄▄▄▓▓▀
 ▀▓▄
 ▀

Successful glitches don’t always return meaning-
ful data, but ID codes can be assembled from their
expected offsets in the page, then verified through an
unlock attempt. Eventually you’ll find a match and,
once successfully unlocked, the entire flash memory
can be dumped or erased and reprogrammed. If
it looks like some data is missing, try reading ad-
ditional flash pages that aren’t officially supported
by the part number since there’s a good chance the
same internal die is used by several part numbers.40

Proceeding with Analysis
Once a firmware image is safely recovered, you’ll al-
most certainly want to inspect how it works. M16C
isn’t as esoteric as it might seem and there are ac-
tually a few different options for analysis. IDA Pro
provides a disassembler for the architecture and Bi-
nary Ninja has some support by way of a third-party
plugin.41 If you’re averse to commercial software
don’t forget about GNU Binutils which supports
M16C and R8C through the m32c-elf target.

;; Recovered firmware through m32 -elf -
objdump

0000 fcca <.data+0xd8ca >:
fcca: eb 40 32 06 ldc #1586 ,isp
fcce: c7 02 0a 00 mov.b:s #2,0xa
fcd2: b7 04 00 mov.b:z #0,0x4
fcd5: b7 0a 00 mov.b:z #0,0xa
fcd8: eb 30 80 00 ldc #128,flg
fcdc: eb 50 b2 05 ldc #1458 ,sp
fce0: eb 60 00 04 ldc #1024 ,sb
fce4: eb 20 00 00 ldc #0,intbh
fce8: eb 10 dc fe ldc #-292, intbl
fcec: fd 64 fc 00 jsr.a 0xfc64
fcf0: 75 cf ba 04 mov.w:g #1586 ,0 x4ba
fcf4: 32 06
fcf6: 75 cf bc 04 mov.w:g #128,0 x4bc
fcfa: 80 00
fcfc: d9 0f be 04 mov.w:q #0,0x4be
fd00: fd a2 fa 00 jsr.a 0xfaa2
fd04: eb 70 00 00 ldc #0,fb
fd08: fd 7a f5 00 jsr.a 0xf57a
fd0c: f5 03 00 jsr.w 0xfd10
fd0f: fb reit
fd10: d9 10 mov.w:q #1,r0
fd12: 6e fd jne 0xfd10
fd14: f3 rts

Alternatively, a Ghidra third party plugin cre-
ated recently is capable of disassembling most in-
structions and may help jumpstart new reverse en-
gineering projects through integration with Ghidra’s
processor independent decompiler.42

1 ;----------------------------------
; after reset , this program will start

3 ;----------------------------------
ldc #((topof istack)+(sizeof istack)),

isp ;set istack pointer
5 mov.b #02h,0ah

mov.b #00h,04h ;set processor mode
7 mov.b #00h,0ah

.if __STACKSIZE__ != 0
9 ldc #0080h,flg

; set stack pointer
11 ldc #((topof stack)+(sizeof stack)),sp

.else
13 ldc #0000h,flg

.endif
15 ldc #__SB__ ,sb ;set sb register

17 ; If the destination is INTBL or INTBH ,
; make sure that bytes are sent in order

19 ldc #((topof vector) >>16)&0FFFFh ,INTBH
ldc #(topof vector)&0FFFFh ,INTBL

21
<omitted >

23
;===================================

25 ; Call main() function
;-----------------------------------

27 ldc #0h,fb; for debugger

29 ; Remove the comment when you use
; global class object

31 ; Sections C$INIT will be generated
; .glb __CALL_INIT

33 ; .call __CALL_INIT ,G
; jsr.a __CALL_INIT

35
.glb _main

37 .call _main ,G
jsr.a _main

Whichever option you pick, be sure to identify
the correct entrypoint for the binary by referencing
the reset vector in the fixed interrupt vector table
at the very end of flash memory.

40See The Secret of R8C/M11A and M12A at the RVF/RC45 blog.
41git clone https://github.com/whitequark/binja-m16c
42git clone https://github.com/silverchris/m16c

44

Die photograph by Travis Goodspeed

An Unexpected Outcome
News of the effort to repurpose the SA868 with cus-
tom firmware eventually found its way to the com-
pany producing the radio modules, NiceRF Wireless
Technology. An amateur radio enthusiast in China,
Amo Xu, made a compelling case for the company
to release an intentionally user-programmable vari-
ant of the module. Shortly after their discussion,
the company began offering the SA868S Open Edi-
tion module. This variant is erased after quality
assurance, guaranteeing the module is unlocked for
reprogramming.

The new SA868S, version 2.0, is notably different
from previous versions in that the microcontroller
has been replaced with one from a different Renesas
microcontroller architecture family, RL78, which is
not vulnerable to the attack presented in this arti-
cle. The RL78 family has, however, been explored
in some detail in the context of the PlayStation 4
gaming console and several useful tools already exist
for working with that platform, including an imple-
mentation of the debugging protocol and third party
plugins for IDA Pro and Ghidra.43

While not as common as it should be, hardware
reverse engineering occasionally leads to mutually
beneficial outcomes with a manufacturer. A deep
dive into an unfamiliar microcontroller architecture
to improve a product’s capabilities led to a manufac-
turer removing obstacles for experimentation. The
availability of the SA868S Open Edition paves the
way for user customizable firmware and has already
motivated the creation of a free and open source al-
ternative firmware granting complete control of all
registers in the underlying transceiver chipset, en-
abling use of digital protocols such as APRS and
M17.44

We hope that you’ve enjoyed this little guide to
Renesas M16C and R8C, and that you’ll keep it
handy when reverse engineering firmware from those
platforms.

43See PS4 Aux Hax 2: Syscon at Fail0verflow.
44git clone https://github.com/OpenRTX/sa8x8-fw.git

45

22:10 A Tourist’s Guide to Эльбрус
by evm

In the tradition of the many high quality tourist
guides that have appeared in this fine publication,
let’s take a magical tour around Russia’s modern
computer architecture, the Elbrus 2000.45 46 47

At A Glance

Common Models
Elbrus-1S+, Elbrus-4S, Elbrus-8S, Elbrus-
8SV, Elbrus-16S

Architecture
Von Neumann
Very Long Instruction Word
Register Windowing (32-bit Base Registers)

Registers
g0–g31: Global Registers
r0–r17: General Purpose (Windowed)
b0–b7: Overlay Register within Window
Pred0-Pred31: Boolean Predicate Registers

Address Space
64-bit Virtual Addressing
Unknown Physical Memory Map

Background & History

Elbrus is a Russian CPU architecture that has been
around in some form for over 40 years. It started at
Lebedev Institute of Precision Mechanics and Com-
puter Engineering. It was the first superscalar, out-
of-order execution processor developed in the Soviet
Union (when the Elbrus 1 debuted in 1979). The ar-
chitecture was extended to be a very long instruction
word (VLIW) architecture with Elbrus 3 in 1990.
Once fully integrated as a microprocessor architec-
ture in 2001 (previous versions had used many dis-
crete chips), the architecture became known as El-
brus 2000, or E2K for short. Elbrus is designed in
Russia but currently manufactured by TSMC in Tai-
wan because of a lack of Russian production facilities
capable of producing chips at advanced technology
nodes.48

In the early ’90s, the Lebedev Institute spun
off a joint stock company called the Moscow Cen-
ter of SPARC Technologies (now shortened to just
MCST). MCST currently produces new Elbrus chips
and Elbrus-based PCs, laptops, and servers. Elbrus-
8S and 8SV are the current top-of-the-line proces-
sor models (eight core versions for servers and desk-
tops), and a lower-cost 1S+ (single core) is available
as well. Note the transliteration from Cyrillic where
the model names appear as Эльбрус-8С, Эльбрус-
8СB, and Эльбрус-1C+, respectively. Anecdotally,
the 8S CPUs are about three times slower than a
comparable Intel CPU,49 but the draw of Elbrus
is that it’s a fully domestically designed Russian
processor. The Russian military has reportedly or-
dered thousands of ruggedized laptops based on the
Elbrus-1S+,50 although there is no indication that
the order was ever delivered.

There is currently very little public documenta-
tion on Elbrus because MCST controls most doc-
umentation under nondisclosure agreements. This
means we don’t have full processor documentation
like we normally would for a commercial CPU.

45Travis Goodspeed and Ryan Speers, “A Tourist’s Phrasebook for Reversing Embedded ARM in the Dialect of the Cortex
M Series,” PoC∥GTFO 11:6

46Ryan Speers and Travis Goodspeed, “A Tourist’s Phrasebook for Reversing MSP430,” PoC∥GTFO 11:08
47Chris Hewitt, “A Tourist’s Guide to Altera NIOS,” PoC∥GTFO 21:7
48Ian Cutress, “Russia’s Elbrus 8CB Microarchitecture: 8-core VLIW on TSMC 28nm,” AnandTech, June 1, 2020.
49Anton Shilov, “Russian-Made Elbrus CPUs Fail Trials, ‘A Completely Unacceptable Platform’,” Tom’s Hardware, December

24, 2021.
50Inna Sidorkova, “Цены на военные ноутбуки достигли Эльбруса.” July 9, 2018, RBC.

46

47

We used three sources of information for this ar-
ticle: (1) a Russian guide to Elbrus programming
and optimization published by MCST,51 (2) source
code published by the OpenE2K group (a hobby-
ist group seemingly unrelated to MCST), and (3)
leaked Linux kernel source code.

MCST is currently on the US sanctions list but
thanks to the Reverend and friends we had access to
an Elbrus-1S+ machine and used it to play around
with some code examples. Our Elbrus was running
a version of Linux made by MCST, but other Rus-
sian Linux distros are also available for Elbrus (e.g.,
Astra Linux). The Elbrus machine has a compiler
called lcc, which is the MCST compiler based on gcc.
It produces standard Linux ELF binary files. The
options for disassembly at the moment are limited
to ldis, which is part of lcc, and objdump, which is
part of the binutils package put out by the OpenE2K
group. ldis produces cleaner output, including reso-
lution of symbol names, while objdump has a debug
flag in the build that will prefix the output with the
decoded instructions in hex. Anecdotally, ldis seems
to miss some things (e.g., not disassemble all func-
tions), although that could be due to operator error.

In order to explore the Elbrus instruction set we
updated rix’s Smashing C++ VPTRs from Phrack
56:8. That is a whole story for a another day, but
you will find my code examples and the correspond-
ing Elbrus disassembly attached to this PDF.52

Basics of Instruction Set Decoding

The first thing we needed to figure out was how
the instruction format works since the official docu-
mentation left this topic out entirely. Fortunately
we found that the OpenE2K binutils release has
a preprocessor flag ENABLE_E2K_ENCODINGS, which
causes objdump to print out the instruction bytes
and their groupings.53 A version of objdump with
this flag was what we used to produce the disassem-
bly for most of this article.

In Elbrus documentation, the VLIW is called
a “wide command” (широкой командой). A wide
command contains multiple instructions, each of
which is targeted at individual execution units in
the CPU pipeline. The documentation variously
uses the terms “commands” (команд), “instructions”
(инструкций), and “operations” (операций) for the

component instructions within the instruction word.
The OpenE2K objdump code refers to the way

these component instructions are encoded as “sylla-
bles.” A nice feature of Elbrus is that the instruction
encoding is fairly simple when compared against
modern DSP architectures we’ve experienced. In-
struction counting is an exploitation task that can
be pretty complicated on some architectures, but
not Elbrus. It’s fairly simple to determine the
length of an instruction from the initial “HS” syl-
lable (shown on page 49).

The HS syllable determines the presence of the
other instruction syllables, which appear in a partic-
ular order. The order is: SS; ALU; CS0; ALES half
syllables 2 and 5; CS1; ALES half syllables 0, 1, 3,
and 4; AAS half syllables; a gap check; CDS; PLS;
and finally LTS (literals). Literal syllables (i.e., im-
mediate values) occur at the end of the syllables.
The OpenE2K objdump code looks for all of the
syllable presence flags above, reads them in order
(minding the possible gap), and then compares the
number of syllables read against the size field in HS.
Any extra syllables are read as literals. For syllables
that contain “half syllables” (i.e., 16-bit values), the
order of the syllables is flipped as they appear se-
quentially in memory.

Byte order | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Half syllable order | 1 | 0 | 3 | 2 |

This makes more sense if you think about the
bytes being read in as 4-byte little-endian values.

Word order | 0 | 1 |

Byte order | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 |

Half syllable order | 0 | 1 | 2 | 3 |

Register Set

Elbrus’s basic registers consist of 18 general-purpose
registers (r0–r17), 32 global registers (g0–g31), and
a sliding set of windowed registers (b0–b7). More
will be explained about the register windowing in
the next section. Registers are prefixed with an ac-
cess width, similar to x86.

For example, sr0 is single (32-bit) r0, and dr0 is
double (64-bit) r0, which is also the default. When
the registers are used with floating point values,

51unzip pocorgtfo22.pdf elbrusprog.pdf
Murad Neumann-zadeh and Sergei Korolev, “Руководство по эффективному программированию на платформе «Эльбрус»”

52unzip pocorgtfo22.pdf vptrs.zip
53git clone https://git.mentality.rip/OpenE2K/binutils-gdb.git

48

|31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

| ALU | ALES | PLS | CDS | CS | | C| | L| NOP | S | F |
L = loop mode
NOP = number of cycles to delay (max 7)
S = size of instruction word (add 1 to get number of 8-byte fields in the instruction word)
C = presence of SS (control transfer) syllable
ALU = presence of ALU syllables (6 possible)
CS = presence of control syllables (call/return , windowing instructions) (CS0 = 14, CS1 = 15)
F = size of F1 fragment (add 1 to get number of 4-byte fields in the fragment)
ALES = presence of ALES syllables (5 possible)
CDS = presence of CDS syllables
PLS = presence of CLS syllables

Encoding of the initial HS syllable, which determines the presence of other syllables, in an Elbrus-wide
instruction word. It is unclear what the ALES, CDS, and PLS syllables are used for as we did not generate
any of those instructions in the example code.

there is an xr0, which is an 80-bit version, presum-
ably using the long double format from x86. Accord-
ing to the documentation, two double registers can
be accessed as a quad register – for example qr[i]
where [i] is even – but gdb on our box doesn’t seem
to be aware of this notation.

CAUTION: Elbrus has a word size of 32-bits for
both registers and memory accesses, so the notion
of single/double/quad on Elbrus is double what you
might be used to on 64-bit x86, where the length of
a word dates back to its early ancestors.

Basic Arithmetic, and Memory Oper-
ations in Elbrus

Here we show the various ALU register operations:

Integer Arithmetic Instructions
add Addition
sub Subtraction
rsub Reverse subtraction

umul/smul (Un)signed integer multiplaction
udiv/sdiv (Un)signed integer division

umod/smod (Un)signed modulo
sxt Sign Extend

Bitwise Operations
and/andn Boolean and/nand
or/orn Boolean or/nor
xor/xorn Boolean xor/xnor
shl/shr Shift left/right
scl/scr Shift cyclic
sar Shift right arithmetic (signed)
insf/getf Set/get bitfield

Floating Point Arithmetic Instructions
fadd Floating point addition
fsub Floating point subtraction
frsub Floating point rev. subtraction
fmax/fmin Floating point maximum/minimum
fmul/fscale FP mult. / mult. by power of 2
fdiv/frcp Floating point division/reciprocal
fsqrt Floating point square root

A basic ALU instruction looks like this:

ALS0 1181d48d addd,0 %dr1, _f16s,_lts0hi 0xfff0, %dr13

This translates to “add double precision, using
channel 0, the 64-bit register %dr1 to the signed 16-
bit value 0xfff0, and place the result in dr13.” There
are six ALU channels, so you can do up to six ALU
instructions in one wide instruction. There is no
simple register “move,” so the compiler tends to use
a zero-add as a “move” instruction. The full list of

49

ALU register operations is shown in the table above.
Notice that this is a fairly small number of opera-
tions. Outside of the VLIW construct, the Elbrus
instruction set feels pretty RISC-like.

Memory operations are also pretty simple. Op-
erations are load and store with a variety of width
specifiers. Addresses can be a register plus an im-
mediate offset, or the sum of two registers. Here is
an example of a basic load operation:

ALS0 678dc08c ldd,0 %dr13, 0x0, %dr12

ldis renders this (a bit more clearly) as:

ldd,0 [%dr13 + 0x0], %dr12

This translates as “load double word (64-bits) from
memory, using channel 0, from the address dr13 +
0, and store in register dr12.” There are also ar-
ray memory load/store operations (ldaa/staa) that
work similarly. As far as we can tell from the docu-
mentation, the array mode doesn’t add any special
addressing. It’s still the sum of two registers or a
register plus a constant; the main advantage is that
there’s a built-in post-increment operation.

Register Windowing
Probably the simplest way to understand register
windowing is that it functions similarly to local vari-
ables within a stack frame in a memory stack. In
processors without windowing (which is nearly all
processor families with some notable exceptions, like
SPARC and Itanium), we are used to code transfer-
ring registers around between function calls, mean-
ing that some registers need to be saved on the mem-
ory stack or transferred to nonclobbered registers
(those guaranteed by the application-binary inter-
face to not get modified by the called function) prior
to a function call.

A function of reasonable complexity will save
registers it’s not supposed to clobber to the memory
stack so that they are available for calculations and
then restore the previous values from the stack at
the end of the function. Register windowing aims to
reduce some of this register bucket-brigading over-
head by making the register set function more like
a memory stack. In the same way that a function
allocates a stack frame for itself, a function allocates
a window of registers.

On Elbrus, this is accomplished in a function
prologue with the setwd instruction. After setwd
executes, the “register” r0 is really a reference to the

first item in the register window. Now the function
can use r0 to r<N> without having to save any reg-
isters from the calling function. How about parame-
ter passing in registers? Just like architectures with
stack-passed parameters, we need a calling function
and the called function to share an overlapping area.

This is done with a wbs parameter in the call in-
struction. wbs indicates the start of shared function
parameters within the current window. After a call,
r0 in the called function now refers to the base of
the shared parameter area. This is illustrated here,
where a caller function has a window of size N and
calls a function that allocates a window of size K:

Caller
dr0 dr(N-1)
<- wbs -> Parameter area

dr0 dr(K-1)
Callee

Elbrus also offers a sliding or mobile base reg-
ister (b), which a function can use within its own
function window. The base register is just an over-
lay on the existing register window; it points to a
given register within the window. Accesses to regis-
ters with the base register use an array notation—for
example, db[0] means “access first double register
(64-bits) at the base pointer.” The instruction set-
bn is used to set this pointer.

The operand rbs (the offset to set b from the
base of the window) is also specified in quadwords.
In practice, it looks like lcc uses the base pointer
to point to the parameter area, so db[0], db[1],
db[2], etc. are parameter 0, parameter 1, parame-
ter 2, etc. for functions that are about to be called.

Since functions return values in dr0, this also
means that db[0] holds the return value from the
calling function’s point of view.

Calls and Branches in Elbrus

Calls and branches are somewhat unique in Elbrus,
they occur in two phases instead of in a single in-
struction the way it works on most architectures.
Elbrus uses the disp instruction to set up any kind
of control transfer instruction. This sets the ctptr1
register to the target address. The call instruc-
tion executes the control transfer. This allows the
pipeline to get a little bit of advance warning for
the call, allowing it to set up state for the target
function, which can be undone or ignored if the call
doesn’t execute. The documentation refers to the
ipd portion as specifying the “swap depth,” but it is
unclear what this means.

50

Return instructions happen similarly with a
return instruction first that sets up the return and
the ct instruction to execute control transfer. (This
is also used for branches, as we’ll discuss in the next
section.) Notice that the function never seems to do
anything with the return address. This is because
Elbrus has a completely separate call chain stack,
called the Procedure Chain Stack (PCS). Architec-
turally this is referenced via the Procedure Chain
Stack Pointer (PCSP) register. The PCSP is not
accessible from user mode; rather, it is set up by
the kernel similarly to how user stack memory gets
set up on a per-process basis.

The Procedure Chain Stack (PCS)

The PCSP is pretty simple—it’s a 128-bit register
with 64-bit “lo” and “hi” parts. The “lo” part con-
tains the base address, and the “hi” part contains an
index to the current frame.54 It is unclear at this
point what the “rw” field is actually used for.

(gdb) info registers pcsp_lo
pcsp_lo 0x1800c2e00002b000 1729596524238909440

base 0xc2e00002b000 214267328638976
rw 0x3 3

(gdb) info registers pcsp_hi
pcsp_hi 0x200000000060 35184372088928

ind 0x60 96
size 0x2000 8192

The Linux kernel source code shows the for-
mat of the stack frames, in the form of the
e2k_mem_crstack struct. Each frame is 32 bytes
and consists of four saved 64-bit register values, the
“lo” and “hi” parts for cr0 and cr1, respectively.
Again we are left without documentation on what
exactly the cr0 and cr1 registers do, but they must
be involved in control transfers. The Linux code
shows that cr0 “hi” contains the return address, and
cr1 contains a bunch of fields pertaining to the cur-
rent procedure’s register window.

Here is the definition of e2k_mem_crstack
(PCSP frame structure) in the E2K Linux kernel
(arch/e2k/kernel/e2k_syswork.c):

typedef struct e2k_mem_crstack {
e2k_cr0_lo_t cr0_lo; //pf?
e2k_cr0_hi_t cr0_hi; //return address
e2k_cr1_lo_t cr1_lo; //mess of fields - includes

// interrupt enable flags
e2k_cr1_hi_t cr1_hi; //more fields - includes register

// window and stuff
} e2k_mem_crs_t;

So the return %ctpr3 instruction is essentially
saying “pop the current frame off the PCS into cr0
and cr1 and stick the return address in ctpr3.”

Branching

A similar construction is used for basic branches.
Rather than flags or conditions registers like in x86
or ARM, VLIW processors often have a full set
of condition registers called “predicate” registers.
These allow the compiler to set up a sequence where
multiple comparisons can happen in advance of a
branch, and then a branch can be based on multi-
ple predicates, or a sequence of branches can occur
using the different predicate registers.

Here’s a common design pattern seen in Elbrus
branches. The following is essentially implementing
if (condition) { function(); } in C.

disp %ctpr1, 0x10d48
cmpedb,0 %dr0, 0x0, %pred0
ct %ctpr1 ? %pred0

First the disp instruction indicates to the
pipeline the control transfer target, the function ad-
dress. Then in the cmpedb instruction dr0 is com-
pared to 0 and the result placed in %pred0 (true
or false). Finally if %pred0 is true then the ct in-
struction causes a control transfer, otherwise we fall
through to the next instruction.

Conclusion
Elbrus processors are pretty capable and make de-
cent Linux machines. While the Elbrus CPU may
be under powered compared with similar Intel or
ARM server processors, given the Russian geopolit-
ical situation, these guys are going to stick around
for a while. Elbrus’s VLIW architecture and register
windowing will pose additional challenges for exploit
writers. Fortunately, the Elbrus component instruc-
tions are very RISC-like, despite the wide command
format.

In this article, we’ve explored the basics of the
instruction set and the PCS using publicly available
documentation. There’s a lot more to learn, how-
ever. We’ll need some full documentation to start
plumbing the depths of things like virtual memory,
interrupt and exception handling, and the boot pro-
cess.

54Current frame address = base + index.

51

22:11 Janus Polyglot
by Harvey Phillips

Who left among you hold any faith in the empty
promises of filetypes? Who is yet to accept to that
beauty is in the eye of the parser? I hope that this
gentle stroll through 512 harmless looking bytes will
dispel any remaining myths that you, dear neigh-
bours, continue to clutch to your collective chests.

Regular readers of this fine journal may have
seen my and @netspooky’s articles in PoC∥GTFO
21:09 and 21:10 respectively. Those were write-
ups for the Binary Golf Grand Prix back in 2020
where the challenge was to produce the smallest
palindromic binary. 2021’s edition of this wonder-
ful challenge pitted competitors against one another
in a battle to produce the smallest polyglot bi-
nary. There were two possible avenues of attack that
were scored separately: you could either connive the
smallest polyglot that was executable as a binary, or
rack up points for every parser that successfully pro-
cessed your entry. We decided to normalize scores
by filesize for this second category, so that the em-
phasis was still on as small a collection of bytes as
possible.

Feeling drawn towards this latter category, and
seeing as the competition’s name begins with the
word “binary,” I chose an x86 bootloader as my host
binary. For those who haven’t delighted in the plea-
sures of 16-bit real-mode assembly, a bootloader for
x86 machines is a 512-byte blob that ends in 0x55aa.
Execution begins at offset 0x0. That’s it.

Ordinarily such a bootloader would be responsi-
ble for loading some more bytes into memory from
a hard drive and jumping to it, maybe setting up
a stack or other registers along the way. The nice
thing about choosing an essentially format-less for-
mat is that I can shift around the code and data
portions of the bootloader to make way for what is
to come. I just have to fit in an appropriate jmp
instruction to keep the execution flow flowing.

So, what does this bootloader do? I thought it’d
be fun to have a single string in the polyglot that
I could either print for executables, or extract for
archive formats. With this in mind, I reused some
old 16-bit real mode assembly I wrote for printing
strings to the screen. Printing a string to stdout in
Linux is very straightforward thanks to the bless-
ing of syscalls. (We do it later on with just a few

lines.) However, 16-bit real mode affords us no such
niceties.

The very rough analogue of the syscall in 16-bit
x86 is the interrupt. Your BIOS may be getting old
now, but it still offers a wealth of prewritten rou-
tines for you to use. Calling a routine via an inter-
rupt is strikingly similar (for good reason!) to using
a syscall: set a value corresponding to the routine
you want in ah, arguments in bl, bh, etc, and throw
the interrupt. As an example, let’s look at the very
first of my routines that the bootloader portion will
call into, clearScreen:

1 pusha ; Save state
mov ah, 0x6 ; "Scroll Up Window" routine

3 xor al, al ; Number of lines to scroll
; (0x0 is the whole screen)

5 mov bh, 0x03 ; Colours: fg black , bg cyan
xor cx, cx ; (CH ,CL) = coordinates of

7 ; upper left corner
mov dx, 0x184f ; (DH,DL) = coordinates of

9 ; lower right corner
int 0x10 ; Graphics Interrupt

11 popa ; Restore state
ret

Pretty straightforward, right? Routine 0x6 from
interrupt 0x10 is Scroll Up Window. We set some
arguments in the other registers and then kick things
off with int 0x10. The reason we need to scroll the
screen at all is because it’s usual for the BIOS to
have left some text in the screen buffer as it loads,
and we want to get rid of it.

Once we’ve cleared the screen, we use another
BIOS routine to set the cursor position, then we
store the memory location of our string in the si reg-
ister before calling our printString function. (Yes
— the BIOS does not provide a routine for printing
strings!) However, it’s easy enough as we are pro-
vided with a Display Character (TTY Output) rou-
tine by the Graphics Interrupt 0x10. So, we simply
loop over the bytes of our string, calling this BIOS
routine each time until we hit a NULL byte. Just
for added panache, I inserted a delay routine in be-
tween printing each character.

Running the polyglot in QEMU with
qemu-system-x86_64 janus.com will spell out the
string.55

55unzip pocorgtfo22.pdf janus.zip

52

COM Shenanigans
How different really is a bootloader to a COM file?
A COM executable doesn’t need that pesky 0x55aa
at the end, and there isn’t a hard byte count to deal
with. However, if you take an x86 bootloader like I
had started off with and run it in dosbox, you don’t
see any output. No errors either, but what has hap-
pened to my beautiful string that the BIOS prints?
The answer lies in the console buffer. Despite its
lowly appearance to today’s behemoths, DOS is in-
deed an operating system (hence the letters O and
S), and it does perform some slight attempts at
memory management. The console buffer where we
enter commands and see their output in DOS is not
mapped to the same memory as the BIOS’s TTY
output buffer. This means that our assembly is still
writing our string, but to somewhere else in memory
that doesn’t show on the screen!

Fortunately, one of the many blessings of DOS
is interrupt 0x21. One of the routines provided by
this interrupt gives the ability to write a string to the
DOS equivalent of stdout. The only thing we need to
be aware of is that this routine expects such strings
to be $-terminated. Yet more fortune is at our door
upon discovering that interrupt 0x21 isn’t mapped
to anything by the BIOS — int 0x21 doesn’t do
anything if we aren’t in DOS!

By modifying our printString routine in our
source, we can first print the string in a DOS man-
ner, and then in a BIOS manner. All we need to
do is append a $ to our string (after the null-byte
that the BIOS routine looks for so we don’t see it
in either output), and remember that the offset to
the string in memory is different in DOS than it is
in BIOS.

While I used nasm for the fine-grained byte con-
trol it gave me, I opted to use its org directive to
tell it to compute offsets relative to 0x7c00, the
bootloader load address on x86 machines. This
means that any other offsets to the string for non-
bootloader sections of executable code would need
to be calculated manually. For DOS, this is no has-
sle as binaries are loaded at address 0x100, meaning
I only have to add 0x100 to whatever the file offset
of my string is.

So, the printString routine ends up like this:

printString:
2 ; DOS Version

push cs ; Set CS=DS
4 pop ds

mov dx, 0x211 ; Offset to string
6 mov ah, 0x9 ; 0x9: Write to DOS stdout

int 0x21 ; DOS Interrupt
8 mov ax, 0x4c02 ; 0x4c: DOS Exit

; 0x02: Return Value
10 int 0x21 ; DOS Interrupt

12 ; BIOS Version
pusha

14 .loop:
lodsb ; Load char from SI to AL

16 test al, al ; Check for null -byte
jz .end

18 call printChar ; Print it.
call delay ; Lazy animation effect

20 jmp .loop
.end:

22 popa
jmp waitForKeypress ; Will loop if held

One final caveat for DOS fun, we need the file to
have a .com file extension! Fortunately, none of the
other parsers that janus supports had a file exten-
sion as a hard requirement.

We can test the COM portions work as expected
by running janus.com under DOSBox.

ELF Shenanigans

From chaos, evolved structure — and so we shall
also find that from the disarray of real-mode, we are
able to find order in the ELF specification.

An ELF file contains a great deal of structure,
but many fields in its various headers are ignored by
the Linux kernel’s ELF loader. We can play this to
our advantage by populating those fields with con-
tent for other parsers! For a recent overview, I sug-
gest that readers take a look at tmp.0ut’s Issue 1:1
where I peruse the various fields in the ELF and
program headers, foraging for those that we are free
to do with as we like — without affecting execution.
For a more fiendish appraisal of these fields, I highly
recommend @netspooky’s series of blogs chronicling
his journey to produce an 85-byte ELF.56

56https://n0.lol/ebm/1.html

53

[COM/MBR] Start
0+2 jg next -> 0x47

[MBR] printChar
->28+2 mov ah, 0xE Display Character (TTY Output)

2A+2 mov bh, 0 Write to Page 0
2C+2 mov bl, 0 Foreground Colour
2E+2 int 0x10 Graphics Interrupt
33+1 ret

[COM/MBR] setCursor
->3A+1 pusha

3B+2 mov ah, 2 Set cursor position
3D+2 mov bh, 0 Page number
3F+2 mov dh, 2 Row number
41+2 mov dl, 0 Column number
43+2 int 0x10 Graphics Interrupt
45+1 popa
46+1 ret

[COM/MBR] next
->47+3 call bootloader -> 0x1B0

[COM/MBR] clearScreen
->7A+1 pusha

7B+2 mov ah, 6 "Scro� up window"
7D+2 xor al, al Number of Lines to Scro� (0x00 = Fu�)
7F+2 mov bh, 3 Colour attribute
81+2 xor ax, ax (CH,CL) = coords of Upper Left Corner
83+3 mov dx, 0x184f (DH,DL) = lower right corner
86+2 int 0x10 Graphics Interrupt
88+1 popa
89+1 ret

[COM] printString
set CS=DS

->8A+1 push cs
8B+1 pop ds

Write string
8C+3 mov dx, 0x0211
8F+2 mov ah, 9 Write string to stdout
91+2 int 0x21 DOS interrupt

Exit(2)
93+3 mov ax, 0x4c02 4C=Exit 02= Ret Val
96+2 int 0x21 DOS interrupt

[MBR] printString
98+1 pusha

loop
->99+1 lodsb Load char in (SI) to AL

9A+2 test al al Check for nu�-byte
9C+2 jz .end -> 0xA6
9E+3 call printChar Print the char-> 0x28
A1+3 call delay Cheap animation e�ect-> 0x179
A4+2 jmp .loop -> 0x99

end
->A6+1 popa

A7+3 jmp waitForKeypress -> 0x1F5
String

->111+33 String BGPP... \n\r\0$

[MBR] delay
->179+1 pusha

17A+2 mov ah, 0x86 BIOS Wait
17C+2 mov al, 0 Unused
17E+3 mov cx, 1 Seconds
181+3 mov dx, 0 Mi�iseconds
184+2 int 0x15 Memory Interrupt
186+1 popa
187+1 ret

[COM/MBR] Bootloader
->1B0+3 call clearScreen -> 0x7A

1B3+3 call setCursor -> 0x3A
1B6+3 mov si, msg -> 0x111
1B9+3 call printString -> 0x8A

[COM/MBR] waitForKeypress
->1F5+1 nop padding

1F6+1 pusha
1F7+2 mov ah, 0x0 Get Keystroke
1F9+2 int 0x16 Keyboard Interrupt
1FB+1 popa
1FC+2 jmp bootloader -> 0x1B0

[MBR] signature
1FE+2 Signature 0x55AA

jg next

mov ah, 0xE
mov bh, 0
mov bl, 0
int 0x10
ret

pusha
mov ah, 2
mov bh, 0
mov dh, 2
mov dl, 0
int 0x10

popa
ret

call bootloader

pusha
mov ah, 6
xor al, al
mov bh, 3
xor ax, ax
mov dx, 0x184f
int 0x10

popa
ret

push cs
pop ds

mov dx, 0x0211
mov ah, 9
int 0x21

mov ax, 0x4c02
int 0x21

pusha

lodsb
test al al
jz .end
call printChar
call delay
jmp .loop

popa
jmp waitForKeypress

String BGPP... \n\r\0$

pusha
mov ah, 0x86
mov al, 0
mov cx, 1
mov dx, 0
int 0x15

popa
ret

call clearScreen
call setCursor
mov si, msg
call printString

nop
pusha

mov ah, 0x0
int 0x16

popa
jmp bootloader

Signature 0x55AA

..

..

..

..

..

..

..

..

..

..

..

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

02x

03x

04x

07x

08x

09x

0Ax

11x

12x

13x

14x

17x

18x

1Bx

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

02x

x8

03x

xA

04x

x7

07x

xA

08x

xA

xC

09x

x3

x8

x9

0Ax

x6

11x

x1

12x

13x

14x

17x

x9

18x

1Bx

1Fx

x5

xE

90 90 90

55 AA

EB B261CD 16B4 006090

E8 CE FEBE 11 7DE8 84 FEE8 C7 FE

C361CD 15BA 00 00

B9 01

00

B0 00B4 8660

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

E9 4B 0161

EB F3E8 D5 00

E8 87

FF

74 0884 C0AC

60

CD 21B8 02 4C

CD 21

B4

09

BA 11 02

1F0E

C361CD 10BA 4F 1831 C9

B7

03

30 C0B4 0660

E8 66 01

C361CD 10B2 00

B6

02

B7 00B4 0260

C390 90 90

CD 10B3 00B7 00B4 0E

7F 45 4C 46 0A 00 9E 20 28 32 34 39 31 29 00 00

4A 00 00 00 00 00 00 00

40 00 38 00 01 00

01 00 00 00 05 00

00 00 2B 00 00 00 00 00 00 00

B0 01 66 89 C7 BE

00

C4 3D 7B 00 40 07 00 50 4B 01 02 00

58 58 58 58 58 F3 00 00 00

50 4B 05 06 00 00 58 58

A9 0E 20 D2

49 20 4C D2 FF

EOF

Figure 10: COM and MBR’s side of Janus

54

For the attendees in the back who are not fully
acquainted with the internals of ELF, here is very
brief overview of the parts relevant to us:

• The ELF header (\x7fELF) must begin at off-
set 0x0

• The e_phoff field of the ELF header is a file
offset to first program header

• The first (and in our case, only) program
header will detail where our x64 Linux assem-
bly can be found, and where it is to be loaded
in memory

The important takeaway here is that, although
our ELF header has to begin at offset 0x0, the pro-
gram header can appear much later because we pro-
vide the ELF parser with an offset to it. However,
we do have a potential issue: we already have some-
thing at offset 0x0, the entry point to the BIOS and
COM assembly!

The first few bytes of the ELF header (and there-
fore any valid ELF file) are \x7fELF, which disas-
semble as 16-bit real-mode instructions to:
jg 0x47
dec sp
inc si

So, upon our dutiful BIOS loading this particu-
lar collection of bytes into memory and jumping to
offset 0x0, it will immediately jump to offset 0x47,
thanks to how the EFLAGS register is initialized
at boot. (At least in SeaBIOS that QEMU uses —
I’d be very interested if any neighbours know of any
variance in this observation!) Therefore, all we are
required to do in order to overcome this calamity is
move our real-mode assembly elsewhere, and place
yet another jmp to it at offset 0x47. This way, after
bouncing around a few times, our BIOS and DOS
functionality is preserved.

Populating the beginning of our file with an ELF
header, and armed with a list of fields that we know
are ignored by the Linux loader, we can fill in sev-
eral gaps with more interesting things. At this stage
of my design, I simply left these fields with X’s so
that I could come back later and put something fun
in its place. Several of the real-mode routines are
small enough that they fit in overlooked uint64_t
fields. Can you spot them all?

Lastly, an ELF that presents itself as executable
in its header requires something to execute! Run-
ning with the same theme of printing the string al-
ready present in the file, I used:

1 mov al, 0x1 ; SYS_WRITE
mov di, ax ; Write to stdout

3 ; (file descriptor 1)
mov esi , 0x400111 ; Virtual memory address of the

5 ; string: 0x400000 + file offset
mov dl, 0x32 ; String length

7 syscall
mov al, 0x3c ; SYS_EXIT

9 inc di ; Return value 0x2
syscall

Notice that we have to calculate the virtual ad-
dress of the string manually again! The string ap-
pears at file offset 0x111, and our ELF is loaded to
address 0x400000. Adding the two gives us the right
address.

As a final touch, we can now set the size of our
file to be loaded in the p_filesz and p_memsz fields
of the program header, set p_offset to 0x0 so we
load the entire 512 bytes, and at long last we can set
e_entry so that the Linux loader knows what vir-
tual memory address to jump to after loading our
ELF into memory.

To test things are as they should be, we can run
the binary in any x64 Linux distro.

RAR Shenanigans

Long time neighbours will no doubt have seen sev-
eral polyglots over the years incorporating the RAR
file format. It was my intention all along for each
of the incorporated file formats to make use the
same string over and over again, either printing it
or decompressing to it. Fortunately, RAR (and as
we’ll see later, ZIP) supports containing files with-
out compression, meaning we can just dress up our
string with the appropriate structures and unrar
should play fair!

For anyone looking to get a decent handle on the
RAR format, Ange Albertini’s poster on page 57 is
an invaluable first step. Looking at this, we see a
reasonably straightforward structure to the file. One
of the several fun things about the RAR format is
that the Rar! magic can appear at any offset in the
file, which means we aren’t bound to place the RAR
part of the file at any particular location.

However, unlike in the executable portions of
janus, we can’t point the unrar parser to any lo-
cation we like for our (un)compressed data. Indeed,
the RAR File Header must immediately prepend the
data, and the Archive End structure immediately
follows it. This is one of the first hard restrictions
on our binary. We have a whole 0x3d bytes before
our string, and another 0x7 bytes after it. If we

55

Elf header
e_ident

0+4 EI_MAG \x7F ELF
5+1 EI_DATA None

ELF64_Ehdr
10+2 e_type 2 ET_EXEC
12+2 e_machine 0x3E EM_X86_64
14+4 e_version Ignored
18+8 e_entry 0x4000AA -> 0xAA
20+8 e_phoff 0x4A -> 0x4A
34+2 e_ehsize 0x40
36+2 e_phentsize 0x38
38+2 e_phnum 1

ELF64_Phdr (Program header)
->4A+4 p_type 1 LOAD

4E+4 p_flags 5 XWR
52+8 p_offset 0
5A+8 p_vaddr 0x400000
6A+8 p_filesz 0x2B She�code + Strlen
72+8 p_memsz 0x2B She�code + Strlen

x64 code
->AA+2 mov al, 1 WRITE

AC+3 mov di, ax STDOUT
AF+5 mov esi 0x400111 bu�er-> 0x111
B4+2 mov dl, 0x32 strlen
B6+2 syscall

B8+2 mov al, 0x3C EXIT
BA+3 inc di ret 2
BD+2 syscall

String
->111+33 String BGPP... \n\r\0$

EI_MAG \x7F ELF
EI_DATA

e_type 2
e_machine 0x3E
e_version
e_entry 0x4000AA
e_phoff 0x4A
e_ehsize 0x40
e_phentsize 0x38
e_phnum 1

p_type 1
p_flags 5
p_offset 0
p_vaddr 0x400000
p_filesz 0x2B
p_memsz 0x2B

mov al, 1
mov di, ax
mov esi 0x400111
mov dl, 0x32
syscall

mov al, 0x3C
inc di
syscall

String BGPP... \n\r\0$

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

02x

03x

05x

06x

07x

0Ax

0Bx

12x

13x

14x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

02x

03x

xA

05x

06x

07x

0Ax

xA

0Bx

x1

12x

13x

14x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

X X X X X X X X

00 B602 B760 B490 90 90 C3

B4 0E B7 00 B3 00 CD 10

32 34 39 31 29 00 0028209E0A

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

0F 0566 FF C7B0 3C0F 05B2 32

BE

11 01 40 00

66 89 C7B0 01

2B 00 00 00 00 00 00 00

2B 00 00 00 00 00

00 00

X X X X X X X X

00 00 40 00 00 00

00 00

00 00 00 00 00 00 00 00

05 00

00 00

01 00 00 00

00 B602 B760 B401 0038 0040 0090 90 90 C3

B4 0E B7 00 B3 00 CD 104A 00 00 00 00 00 00 00

AA 00 40 00 00 00 00 0000 00 00 003E 0002 00

32 34 39 31 29 00 0028209E000A7F E L F

FF E8 D5 00 EB F3 61 E9 4B 01

52

Figure 11: ELF’s side of Janus

56

EOF

Signature
Main header

File header

End block
Roshal archive

a RAR v4 file

 0+7 Magic Rar! EOF BEL NUL

 7+2 CRC16 0x90CF
 9+1 BlockType 0x73 Main header
 A+2 Flags 0x0000
 C+2 BlockSize 13
 E+6 PosAV 0 No AV signature

14+2 CRC16 0x7315
16+1 BlockType 0x74 File header
17+2 Flags 0x8020 Win128 / LongBlock
19+2 BlockSize 0x28
1B+4 CompSize 4
1F+4 UncompSize 4
23+1 Host OS 2 Win32
24+4 CRC32 0x982134A1
28+4 Timestamp 2020-01-18 19:08:40
2C+1 Version 0x1D v2.0
2D+1 CompMethod 0x30 Uncompressed
2E+2 FilenameLen 8
30+4 Attributes 0x20 Archive
34+8 Filename rar4.txt

3C+4 File data RAR4

40+2 CRC16 0x3DC4
42+1 BlockType 0x7b End of archive
43+2 Flags 0x4000
45+2 BlockSize 7

Magic Rar! EOF BEL NUL

CRC16 0x90CF
BlockType 0x73
Flags 0x0000
BlockSize 13
PosAV 0

CRC16 0x7315
BlockType 0x74
Flags 0x8020
BlockSize 0x28
 CompSize 4
 UncompSize 4
 Host OS 2
 CRC32 0x982134A1
 Timestamp
 Version 0x1D
 CompMethod 0x30
 FilenameLen 8
 Attributes 0x20

 Filename rar4.txt

File data RAR4

CRC16 0x3DC4
BlockType 0x7b
Flags 0x4000
BlockSize 7

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

+7

1x

+4

2x

3x

+C

4x 07 0000 407BC4 3D

R A R 4

r a r 4 . t x t20 00 00 00

08 00301D14 99 32 50A1 34 21 9802

04

00 00 00

04 00 00 0028 0020 807415 73

00 00

00 00 00 00

0D 0000 0073CF 90

R a r ! ^Z ^G \0

Name: rar4.txt
Type: File
Size: 4
Packed size: 4
Ratio: 100%
Modified: 2020-01-18 19:08:40,000000000
Attributes: ..A....
CRC32: 982134A1
Host OS: Windows
Compression: RAR 1.5(v29) -m0 -md=128K

Figure 12: Ange Albertini’s Poster on RAR Format

want to relocate our string later, we have to move
all these surrounding bytes with it.

There is one slight loophole here that we will cer-
tainly play to our advantage when it comes to ZIP
shenanigans: the field at the end of the File Header,
just before our string begins, is the filename. Ordi-
narily, the filename would be just that, the filename.
There is even a separate field for the filename length,
so we don’t have to null-terminate it or anything like
that. It turns out that the filename can actually be
anything we want—including non-printable charac-
ters!

There is a pretty big downside to all of this RAR
business. Although we control the size of the data
in the File Header, the unrar parser will not tol-
erate any junk between the end of the compressed
data and the start of the Archive End. Therefore,
extracting our string with unrar will include the
\n\r\0$ bytes in its output. I thought about possi-
ble ways around this due to its esthetically displeas-
ing nature, but it seems to be a necessary evil.

There were two major stumbling blocks I found
along the way. The first was the CRC. In the for-
mat specification, it occupies the top two bytes in

each of the Main Header, File Header and Archive
End structures. Leaving these bytes as NULLs made
unrar complain about a CRC error, so I was reason-
ably confident that the rest of the bytes were cor-
rect. I had seen in various sources that the CRC
was a CRC16, but after trying several times with
different regions of bytes, and different polynomials,
I couldn’t find anything that worked.

Eventually, I resorted to RTFM’ing and I
dragged up the UnRAR sourcecode. This is found
in rawread.cpp.

// RAR 1.5 block CRC.
2 uint RawRead :: GetCRC15(bool ProcessedOnly) {

if (DataSize <=2)
4 return 0;

uint HeaderCRC=CRC32(0xffffffff ,&Data[2],
6 (ProcessedOnly ? ReadPos:DataSize) -2);

return ~HeaderCRC & 0xffff;
8 }

After smacking my head against the desk a few
times, I tried computing the CRC32 of the Main
Header, and chopped off the top two bytes to ob-
tain 0x90cf—precisely the CRC of the Main Header
from the reference I used. A truncated CRC32 is
most certainly not the same as a CRC16! Had I

57

begun by looking at the unrar sourcecode instead
of trying to brute force various CRC16 polynomi-
als to find a match where there was none, I would
have saved myself several evenings. Fortunately, the
python zlib library offers a crc32() function which
precisely computes the CRC we need:

>>> header = bytes.fromhex(
’7300000 d00000000000000 ’)

>>> hex(zlib.crc32(header) & 0xffff)
’0x90cf ’

The second confusing feature of the RAR format
was the datetime format in the timestamp field of
the File Header. Eventually, I found it documented
in one of the Kaitai Struct examples.57 It’s just a
bitfield, common in DOS-land. Both the date and
time occupy a uint16 each.

year = ((date & 0b1111111000000000) >> 9) + 1980
month = (date & 0b0000000111100000) >> 5
day = (date & 0b0000000000011111)
hour = (time & 0b1111100000000000) >> 11
minute = (time & 0b0000011111100000) >> 5
second = (time & 0b0000000000011111) * 2

To be confident things are working properly,
unrar p janus.com happily produces our string,
with the unfortunate extra $ on the end.

ZIP Shenanigans

If you are not yet acquainted with the details of the
PKZIP format, and felt that incorporating a RAR
into our polyglot was intricate, I have bad news for
you. But the PKZIP format actually lends itself
very nicely to polyglots! The thing that makes it
unique (at least in my experience) is that a proper
PKZIP parser, will process a file backward. Typi-
cally, we think of parsers are looking for some magic
value which indicates the start of the data it should
parse. PKZIP flips everything on its head and in-
stead looks for the End of Central Directory signa-
ture, which comes at the end of the file.

In this End of Central Directory, there is a
file offset and size of the Central Directory. The
Central Directory holds all the information about
our (un)compressed files contained within, includ-
ing their filenames, and CRCs. (This time around,
it’s just a CRC32.) Also included in this directory
are offsets to our data, which is always prepended
by a Local File Header.

Let’s take a moment to ponder this last point.
Our data (the string we keep re-using) must be
prepended by the PKZIP Local File Header. But
we’ve already added our RAR shenanigans which
also required our data being prepended by some-
thing. (In the case, it was the similarly named File
Header.) How can we reconcile these two facts? The
trick lies in something I hinted at earlier! The final
field of the RAR File Header, which comes immedi-
ately prior to the start of our string, is the filename
of the to-be-extracted file. Seeing as we aren’t too
fussed by actually extracting this string to a file with
unrar, we can simply use this filename field to store
the PKZIP Local File Header! The downside is that
we’ll end up with a nasty filename in our directory
if we run unrar with the x switch. (Try unrar p
janus.com instead.) This seems like a small price
to pay in order for RAR and PKZIP to peacefully
coexist!

As other devotees of weird machines will no
doubt be familiar, when a trick like smuggling bi-
nary data in filenames works with one format, we
are led to ask whether it will work elsewhere? If
the RAR specification outlines no consequences for
unpleasantness in a filename, does the PKZIP spec-
ification also afford us this luxury? It does!

In contrast to the RAR format, the filename in
PKZIP lies in the Central Directory rather than the
Local File Header. This means that the filename
according to PKZIP actually occurs later in the file,
whereas RAR believes the filename lies just before
the data begins. This trick wasn’t actually needed
based on the file formats that I selected for inclu-
sion in my polyglot, but it may well be useful to you
in future endeavours. In my case, I opted to place
one of the 16-bit real mode routines into the PKZIP
filename, namely the delay routine. When was the
last time one of your binaries executed a filename as
machine code?

GNU Multiboot2 Shenanigans

At what point do we call something a file format?
How much format does there have to be to a file? I
ask because I have trouble identifying this next in-
clusion with an actual file format. Indeed, the GNU
Multiboot2 format has a specification and a parser
(grub-file from the grub2 project).58 But. . . well,
read on and see for yourself if you agree with my

57rar.ksy, near line 151.
58https://www.gnu.org/software/grub/manual/multiboot2/multiboot.html

58

[GNU] Multiboot 2.02
1A0+4 Magic 0xE85250D6
1A4+4 Architecture 0 i386
1A8+4 Header length 0x100
1AC+4 Checksum 0x17ADAE2A

Magic 0xE85250D6
Architecture 0
Header length 0x100
Checksum 0x17ADAE2A

1Ax

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

1Ax

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

2A AE AD 1700 01 00 0000 00 00 00D6 50 52 E8

Figure 13: Multiboot’s side of Janus

feeling of cheekiness in including it in my polyglot.
The GNU Multiboot2 is a pretty straightforward

specification that allows a bootloader like GRUB to
boot a file without having to go via the BIOS. GRUB
will parse a file top-to-bottom looking for the magic
(0xE85250D6), so we can have anything we like both
before and after the relevant bytes. In total, we re-
quire four uint32’s worth of bytes, but we have to
be 64-bit aligned, so I ended up with an additional
four bytes of padding to round off the PKZIP End
of Central Directory.

The format is as follows: Magic, Architecture,
Header Length, Checksum. That’s it. I already
mentioned that the magic is 0xE85250D6. The ar-
chitecture value corresponding to i386 is simply 0x0
and the header length is self-explanatory. The only
thing worth commenting on here is the checksum.
It’s possibly the simplest checksum I’ve ever encoun-
tered: the unsigned 32-bit sum of the magic, archi-
tecture, header length and checksum is 0x0. Simple!

So, all that was required to be able to claim an-
other file format in my polyglot was to find room for
20 bytes, including four bytes of padding! Cheeky?
Absolutely. Technically correct? Absolutely.

If you have GRUB installed on your ma-
chine, you can test the validity of the poly-
glot as a GNU Multiboot2 image with grub-file
–is-x86-multiboot2 janus.com. There should be
no output, but echo $? will inform you that
grub-file returned 0.

Commodore 64 Shenanigans

Up until this point, we’ve been playing around with
well trodden parsers and specifications. It was cer-
tainly a lot of fun getting to this point, but when
I looked back at my in-progress polyglot in a hex
editor, I saw lots of empty space. This displeased
me. A certain idea had been bugging me for a
while as I was working on this project: could I in-
corporate support for an 8-bit computer? Back in
the 80s, when 8-bit machines reigned supreme, hard
drives were prohibitively expensive for most people,

so programs were typically stored on floppies and
cassettes. My initial approach was to explore the
tape format of the ZX Spectrum—falsely expecting
it to be reasonably malleable to the kinds of distor-
tions that are suitable for polyglotting. A week goes
by and I realised that it wasn’t going to work. (For
those interested: Kaitai Struct already has excellent
support for this format.)

The next thing to try on my list was the Com-
modore 64 PRG format, which turned out to only
just be possible! As you’ll see further down, we end
up having part of our ELF header form lines of BA-
SIC, and we make use of 75% of a uint32. This was
my first time playing with machines and architec-
tures from this era, and it was a lot of fun!

(Note to the reader: in keeping with 8-bit
tradition, hexadecimal values in this section are
prepended by ‘$’.)

For any neighbour unacquainted with the won-
ders of the Commodore 64, it is an 8-bit computer
first released in 1982. It’s powered by an 8-bit 6502
CPU and sports 64k of RAM. All pointers are two
bytes long. The primary way to interface with the
machine is the BASIC interpreter, which it boots
to. There are several different file formats that can
be loaded into memory from either floppy, cassette
or even cartridge. (The cartridge was a distinctly
North American luxury that my European ances-
tors were seemingly deprived of.) In my case, I went
for the most common file format: PRG, short for
“program.”

Before we even begin looking at the structure of
these files, we need to know something about how
they are loaded into memory. Indeed, confusingly
enough there are two different ways: absolute and
non-absolute. The difference is whether the Com-
modore 64 will load the PRG file where it wants to
be loaded, or just ignore it and load it to the start of
BASIC RAM at $0800. This was important because
of the lack of dynamic linking at the time; many
programs had hard-coded offsets that required be-
ing loaded to a particular address in order to make
any sense.

59

[Rar] Magic
BF+7 Signature Rar!^Z^G\0 EOF BELL

[Rar] Main Header
C6+2 CRC32 0x90CF CRC32(header) & 0xFFFF
C8+1 BlockType 0x73 HEAD_MAIN
CB+4 BlockSize 0xD

[Rar] File Header
D3+2 CRC 0x924A CRC32(header) & 0xFFFF
D5+1 BlockType 0x74 HEAD_FILE
D6+2 Flags 0x8020 LHD_WINDOW128 LONG_BLOCK
D8+2 BlockSize 0x3E

DA+4 CompSize 0x33
DE+4 UncompSize 0x51
E2+1 HostOS 2 HOST_WIN32
E3+4 CRC32 0x8AC49CB1 (contents)
E7+4 Timestamp 0xC286CA0 1/8/1986 13:37
EB+1 Version 0x14 VERSION_2_0
EC+1 Method 0x30 UNCOMPRESSED
ED+2 FileNameLen 0x1D
EF+4 Attributes 0x20 ARCHIVE

[Zip] LocalFile Header / Rar: Filename
->F3+4 Signature PK\3\4

F7+2 VersionNeeded 0xA
101+4 CRC32 0x2CD1A660 (contents)
105+4 CompSize 0x30
109+4 UncompSize 0x30

String
111+33 String BGPP... \n\r\0$

[Rar] Archive End
144+2 CRC 0x3DC4 CRC32(header) & 0xFFFF
146+1 BlockType 0x7B HEAD_ENDARC
147+2 Flags 0x4000
149+2 BlockSize 7

[Zip] Central Directory
->14B+4 Signature PK\1\2

151+2 VersionNeeded 0xA
15B+4 Crc32 0x2CD1A660
15F+4 CompSize 0x30
163+4 UncompSize 0x30
167+2 FileNameLen 0xF
175+4 LFHOffset 0xF3 -> 0xF3

[Zip] End of Central Dir
188+4 Signature PK\5\6
192+2 EntryCount 1
194+4 Size 0x3D
198+4 OffsetCD 0x14B -> 0x14B

Signature Rar!^Z^G\0

CRC32 0x90CF
BlockType 0x73
BlockSize 0xD

CRC 0x924A
BlockType 0x74
Flags 0x8020
BlockSize 0x3E

CompSize 0x33
UncompSize 0x51
HostOS 2
CRC32 0x8AC49CB1
Timestamp 0xC286CA0
Version 0x14
Method 0x30
FileNameLen 0x1D
Attributes 0x20

Signature PK\3\4
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30

String BGPP... \n\r\0$

CRC 0x3DC4
BlockType 0x7B
Flags 0x4000
BlockSize 7

Signature PK\1\2
VersionNeeded 0xA
Crc32 0x2CD1A660
CompSize 0x30
UncompSize 0x30
FileNameLen 0xF
LFHOffset 0xF3

Signature PK\5\6
EntryCount 1
Size 0x3D
OffsetCD 0x14B

..

..

..

..

..

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0Bx

0Cx

0Dx

0Ex

0Fx

10x

11x

12x

13x

14x

15x

16x

17x

18x

19x

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0Bx

xF

0Cx

x6

0Dx

x3

0Ex

0Fx

x3

10x

11x

x1

12x

13x

14x

x4

xB

15x

16x

17x

18x

x8

19x

1Fx

X X58 58

58 5800 00

X X X X

X

X

X X00 0000 00

X X X X00 0000 00

00

00

00

00

00 00

X X X

X

00 0000 00

00

00 00 00

00 00

X X4B 01 00 003D 00 00 0001 0058 58

58 5800 00P K 05 06

F3 00 00 00X X X X

X

X

X X00 0000 000F 0030 00 00 00

30

00 00 00

60 A6 D1 2CX X X X00 0000 000A 00

00

00

P K 01 02

07 0000 407BC4 3D

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

00

00

00 0030 00 00 0030 00 00 0060 A6 D1 2C

X X X

X

00 0000 000A 00P K 03 04

20

00 00 00

1E 003014A0 6C 28 0CB1 9C C4 8A02

33 00

00 00

33 00 00 003E 0020 80744A 92

00

00 00 00

0D 00 00 0000 0073CF 90

R

a r ! 1A 07 \0

11 01 40 00 B2 32 0F 05 B0 3C 66 FF C7 0F 05

60 B4 86 B0 00 B9 01

00 BA 00 00 CD 15 61 C3

58 58

49 20 4C D2 FF 90 60 B4 00 CD 16 61 EB B2 55 AA EOF

Figure 14: Rar and Zip’s sides of Janus

60

We are very lucky that this is the case! The
first two bytes of a PRG file are a pointer to where
in memory the PRG is supposed to be loaded. In
our case, this is $7f45 (the start of the ELF magic),
which is not a valid location for a BASIC program to
be loaded to. However, by loading our PRG in non-
absolute mode, these bytes are ignored, although
they must still be present.

The next two bytes are supposed to be a pointer
to the first line of BASIC. We are stuck with this
being $4c46. (This is the ‘LF’ of the ELF magic.)
Non-absolute mode to the rescue! Our file is go-
ing to just be parsed sequentially instead of hopping
around for lines of BASIC to interpret.

What comes next is a line of BASIC. I’m sure
many readers will have written some BASIC before,
even those like myself who are too young to have
lived through BASIC’s heyday. But what does a
line of BASIC look like on disk? Disk space was a
premium back in the 80s and it didn’t make sense to
store entire words like PRINT, PEEK and POKE when
a single byte could accomplish the same job. Fortu-
nately for the programmers, commands like LIST au-
tomatically converted the tokenized BASIC on disk
and in memory to the much more familiar and ver-
bose form that we all know.

So, according to a PRG file, a line of BASIC is
composed of: a two-byte little-endian line number,
a single byte BASIC token, arguments in PETSCII
(kinda like ASCII, as we’ll see in a bit), and a NULL
terminator. Here we are at offset +0x4 into our ELF
header, writing BASIC! Out of respect and defer-
ence to the old ways, our first line number is going
to be 10, but what are we going to actually do?

As we don’t have a whole lot of room to do much
of anything in before the ELF header starts getting
picky with us, we have to move our execution some-
where else as soon as possible. The easiest thing
to do is to make our BASIC program simply jump
to some 6502 machine code with the SYS instruc-
tion and then terminate. That sounds easy enough,
apart from having to write 6502 assembly. Let’s fo-
cus on cramming our minimal BASIC program into
what little space we have first, then we can figure
out where to pass execution to later.

On page 62, we have the first 24 bytes of
janus.com, with both the ELF and Commodore 64
interpretations of each byte. Let’s take it from the
top:

As already mentioned, the first $7f45 pointer
would be the load address of the PRG if we loaded

in absolute mode, so these bytes are ignored, as are
the next two bytes $4c46, which completes the ELF
magic.

Now comes $0a00, or “10”, which is our first BA-
SIC line number. The ELF parser believes this to be
EI_CLASS and EI_DATA. Next up we have $9e which
is the BASIC token for the SYS instruction, which
will jump to executing 6502 instructions at the dec-
imal address we provide it. ELF parsers believe this
byte to be EI_VERSION. Asking readelf, we are in-
formed that the version is 158, or 0x9e in hex. So
far so good!

Next up is the argument to the SYS instruction:
“(2491)”. The actual number is variable, and for
a long time I left this as 1234 until I knew exactly
where in memory my 6502 instructions would be.
These bytes occupy the region that the ELF spec
identifies as EI_PAD. (The elf man page is a terrific
quick reference for all these structs. In this case
we’re looking at Elf64_Ehdr.)

Assuming our 6502 instructions do what we want
and culminate with a rts instruction, we will end
up back in BASIC and we should be good? But no,
our BASIC program will continue running, and we
need to gracefully finish it. Unfortunately, the next
few bytes form the e_type and e_machine fields of
the ELF header, which we cannot mess around with.
Any deviation from their current state will result in
the ELF not running under Linux.

So, what does the Commodore 64 think these
bytes mean if we just leave them alone? First, no-
tice that we’re actually off-by-one between the ELF
and Commodore 64 interpretations now: the final
byte of EI_PAD is 0x00, but forms part of the $0002
pointer to the next line of BASIC. Similarly, the
0x02 byte is the start of the 0x0200 e_type field of
the ELF header!

We have $0002 as a pointer to a line of BA-
SIC, but that gets ignored unless we’re in absolute
mode (we aren’t). The bytes that follow, $003e, is
the BASIC line number, in little-endian! 0x3e00 is
15,872 in decimal, and indeed, if we run LIST on the
Commodore 64 after loading this PRG, we see:

10 SYS (2491)
15872

So, in other words, the second byte of e_type
and first byte of e_machine are interpreted as a BA-
SIC line number! Pretty cool! To finish up our BA-
SIC program, we have an instant null byte which
ends line 15872 of BASIC, which is also the second

61

EI_MAGIC
| EI_CLASS
| | EI_DATA
| | | EI_VERSION
| | | | EI_OSABI
| | | | | EI_PAD
| | | | | | e_type
| | | | | | | e_machine
| | | | | | | | e_version
| | | | | | | | | |
7F 45 4C 46 0A 00 9E 20 28 32 34 39 31 29 00 00 02 00 3E 00 00 00 00 00

| | | | | | | | | | |
| | | | | | | | | Empty line , FIN
| | | | | | | | Pointer to next line(ignored)
| | | | | | | Empty line
| | | | | | Line Number (15872)
| | | | | Pointer to next line (ignored)
| | | | " (2491)"
| | | SYS Token
| | Line Number (10)
| Pointer to first line (ignored)
Load address (ignored)

Figure 15: First 24 Bytes of Polyglot, labeled for ELF and Commodore 64 parsing

byte of e_machine (0x3e00). Finally, we have a null
pointer to the next line of BASIC, followed by an-
other null. This indicates the end of the BASIC pro-
gram. But here we have the fun observation I men-
tioned earlier: our BASIC program ends 3 bytes into
the e_version uint32. The last byte only matters
to the ELF parser! And with just one byte to spare!
The next field in the ELF header is e_entry, which
is the entrypoint of the program and something we
definitely can’t screw with. Phew!

Okay great, we can just about smuggle a very
small BASIC program into the ELF header which
will jump to any location we specify and start ex-
ecuting 6502 instructions. To top it off, as long as
we finish our machine code with an rts instruction,
our program will gracefully terminate and return to
the BASIC prompt! So, what are we going to do?
Print our string of course!

If, like me, you have never written or even looked
at 6502 assembly before, you’ll see that it’s not too
hard, but does have a couple of quirks. For one, the
6502 is an 8-bit CPU, but the Commodore 64 has
64k of memory. This means that every pointer takes
two store operations to store in memory: one for the
low byte, and another for the high byte.

Secondly, the first page (256 bytes) of memory is
called the zero page. (The first byte of any pointer
indicates which page it’s in.) The zero page is spe-
cial because we can index structures within it with

just a single byte, i.e. we only need one register
to be an index into our string if we store it in the
zero-page.

62

Despite ASCII being nearly twenty years old
when the C64 was first released, it instead uses
PETSCII, which supports two slightly different lay-
outs. At boot, it has the first character set loaded
with only has capital letters. Our string has lower-
case letters too, but if we try printing it now, we’ll
see it all caps. We can load the alternative charac-
ter set (which does include lowercase) by “printing”
the byte 0x0e. We do this using the C64 CHROUT
routine which lives at $ffd2 in the Commodore’s
KERNAL ROM. All we have to do is put 0x0e in
the A register and jump to the right address ($ffd2):

lda #0x0e
jsr $ffd2

Next we have to store a pointer to our string in
the zero-page. I chose $0020 for this, so we’ll be
storing bytes at $0020 and $0021. Instead of work-
ing out manually where my string would be, I just
loaded the binary in the VICE emulator and used
the built-in monitor (debugger to you and me), to
see where it ended up. It turns out the string lives
at $0910. (BASIC RAM starts at $0800, so this
feels about right.) Storing the pointer simply looks
like:
lda #0x09 ; Load 0x09 in A
sta $21 ; Store byte in A in address $0021
lda #0x10 ; Load 0x10 in A
sta $20 ; Store byte in A in address $0020

A little unusual to modern eyes, but still pretty
straightforward. Lastly, we just need to write some
logic to loop over our string, checking for a null-byte
terminator, and then return control to the BASIC
interpreter with rts.

There are two final quirks to consider. First, the
Commodore 64 has a 40-character wide display, but
my string is longer than that. I opted to include
a manual line break after 33 characters have been
printed just so things wrap in a nice way. Similarly,
I also print another line break when we’re done so
that the BASIC prompt appears neatly on the next
line.

The other quirk deals with PETSCII again. The
string in memory is ASCII because that’s what every
other format that uses it expects. Is converting from
ASCII to PETSCII going to be a royal pain? As for-
tune would have it, in this second PETSCII charac-
ter set, the byte representations of the alphanumeric
characters differ only in the sixth most significant
bit! The alphanumeric characters begin at 0x40 on-
wards, so we only need to make the conversion for

bytes larger than that. Therefore in our character
printing routine that the string printing routine calls
each loop, we can simply do the following (the ASCII
byte to print is in the A register):

cmp #0x40 ; Compare byte in A to 0x40
2 bcc +$2 ; Branch if Carry Clear to the jmp

; instruction (i.e. if A < 0x40)
4 eor #0x20 ; Toggle 6th bit..

jmp $ffd2 ; Jump to CHROUT in KERNAL ROM

We check to see if the byte is greater than 0x40
(‘a’ in PETSCII character set 2), if it is, we bitwise-
or it with 0b00100000 to flip the 6th bit, and then
jump to the CHROUT routine in ROM.

Putting everything together, our 6502 assembly
looks like this:

1 lda #0x0e ; Full Character Set
jsr $ffd2 ; CHROUT

3
lda #0x09

5 sta $21 ; High Byte of String
lda #0x10

7 sta $20 ; Low Byte of String

9 jsr $09cc ; Call PRINTSTR
rts ; Return to BASIC

11
PRINTSTR:

13 ldy #0x0 ; Reset Y register to 0
LOOP:

15 lda ($20),y ; Read char from zero -page
cpy #$21 ; Past 33 characters?

17 beq +$b ; If so, jump to EXTRACR
cmp #$00 ; Null -terminator?

19 beq +$d ; If so, jump to DONE
jsr $09eb ; Jump to PRINTCHAR

21 iny ; Increment Y
jmp $09ce ; Jump to LOOP

23 EXTRACR:
jsr $09e6 ; Jump to PRINTCR

25 jmp $09d4 ; Return to LOOP
DONE:

27 rts ; Return

29 PRINTCR:
lda #13 ; Store CR in A

31 jmp $09eb ; Jump to PRINTCHAR

33 PRINTCHAR:
cmp #0x40 ; Greater than 0x40?

35 bcc +$2 ; If so, jump to DONE
eor #0x20 ; Convert ASCII to PETSCII

37 DONE:
jmp $ffd2 ; CHROUT Routine

As you can see, it’s pretty similar to any other
string printing routine in assembly. (For example,
the one we wrote for the 16-bit real mode portion
of this polyglot.) Sure, there are a couple of extra

63

quirks in there, but nothing too hazardous. Notice
how we were able to use the Y register to index our
string in the zero-page.

The final part to this Commodore 64 addition is
how load this thing? I’ve mentioned that it’s vital
to load this PRG in non-absolute mode so that the
ELF header can coexist with our BASIC program.
This is simple, and can be specified when we use
the LOAD BASIC instruction: LOAD "janus.com",8
is all it takes. Notice the lack of an extra ,1 which
is usually seen with the LOAD command. This extra
argument is used to specify whether we are loading
in absolute mode or not! Alternatively, if using the
VICE emulator like I was, the -basicload argument
does this for us.

 **** commodore 64 basic v2 ****

 64k ram system 38911 basic bytes free

ready.
load"janus.com",8

searching for janus.com
loading
ready.
list

10 sys (2491)
15872
ready.
run
BGPP 2021 GOT ME THINKING STRANGE

- xcellerator

ready.

Thinking of taking your
programming skills beyond BASIC?

Our 8bitworkshop books will teach you how
to speak to computers in their native

languages — 6502 and Z80.

Use our development tools from the comfort
of your home. Write source code in C and
watch as we translate it to machine code,

then run it on a simulated microcomputer.

To access, enter into your data terminal:
8BITWORKSHOP.COM

Summary

Thank you for joining me on this journey, fellow
computer-enjoyers. This whole process was a wild
ride of mixed emotions. These 512 bytes took me a
few months to assemble into their final form. Like
2020’s inaugural Binary Golf Grand Prix, I was con-
vinced that I wouldn’t be able to produce an entry,
but just kept working on it until something started
to come together. Like many readers of this fine
journal, I had read the many prior articles on poly-
glot techniques, but had yet to attempt one of my
own.

If you think that this sounds like fun, then you’re
in luck! The Binary Golf Grand Prix has run now
for four years and rumours have it that there are
already plans for 2024.
000: 7f E L F 0a 00 9e 20 (2 4 9 1) 00 00
010: 02 00 3e 00 00 00 00 00 aa 00 40 00 00 00 00 00
020: 4a 00 00 00 00 00 00 00 b4 0e b7 00 b3 00 cd 10
030: 90 90 90 c3 40 00 38 00 01 00 60 b4 02 b7 00 b6
040: 02 b2 00 cd 10 61 c3 e8 66 01 01 00 00 00 05 00
050: 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00
060: 00 00 58 58 58 58 58 58 58 58 2b 00 00 00 00 00
070: 00 00 2b 00 00 00 00 00 00 00 60 b4 06 30 c0 b7
080: 03 31 c9 ba 4f 18 cd 10 61 c3 0e 1f ba 11 02 b4
090: 09 cd 21 b8 02 4c cd 21 60 ac 84 c0 74 08 e8 87
0a0: ff e8 d5 00 eb f3 61 e9 4b 01 b0 01 66 89 c7 be
0b0: 11 01 40 00 b2 32 0f 05 b0 3c 66 ff c7 0f 05 52
0c0: 61 72 21 1a 07 00 cf 90 73 00 00 0d 00 00 00 00
0d0: 00 00 00 4a 92 74 20 80 3e 00 33 00 00 00 33 00
0e0: 00 00 02 b1 9c c4 8a a0 6c 28 0c 14 30 1e 00 20
0f0: 00 00 00 P K 03 04 0a 00 00 00 00 00 58 58 58
100: 58 60 a6 d1 2c 30 00 00 00 30 00 00 00 00 00 00
110: 00 B G G P 2 0 2 1 G O T M
120: E T H I N K I N G S T R A N
130: G E - x c e l l e r a t o r
140: 0a 0d 00 24 c4 3d 7b 00 40 07 00 P K 01 02 00
150: 00 0a 00 00 00 00 00 58 58 58 58 60 a6 d1 2c 30
160: 00 00 00 30 00 00 00 0f 00 00 00 00 00 58 58 58
170: 58 58 58 58 58 f3 00 00 00 60 b4 86 b0 00 b9 01
180: 00 ba 00 00 cd 15 61 c3 P K 05 06 00 00 58 58
190: 58 58 01 00 3d 00 00 00 4b 01 00 00 58 58 58 58
1a0: d6 50 52 e8 00 00 00 00 00 01 00 00 2a ae ad 17
1b0: e8 c7 fe e8 84 fe be 11 7d e8 ce fe a9 0e 20 d2
1c0: ff a9 09 85 21 a9 10 85 20 20 cc 09 60 a0 00 b1
1d0: 20 c0 21 f0 0b c9 00 f0 0d 20 eb 09 c8 4c ce 09
1e0: 20 e6 09 4c d4 09 60 a9 0d 4c eb 09 c9 40 90 02
1f0: 49 20 4c d2 ff 90 60 b4 00 cd 16 61 eb b2 55 aa

Thanks go to @netspooky for creating and mas-
terminding this competition. Thanks also to ev-
eryone who submitted entries last year, as well as
the Binary Golf Association for comprehending and
scoring them all.

So this is my submission in all its glory: an x86
bootloader, ELF, COM, RAR, ZIP, GNU Multi-
boot2 Image, and Commodore 64 PRG hybrid. You
can find this project with a full nasm listing on
GitHub.59

Until next time!

59git clone https://github.com/xcellerator/janus

64

Basic (loaded at $0801)
C64 basic

Line
4+2 Line 10

6+1 Token 0x9E SYS
7+8 Argument ' (2491)' $9bb-> 0x1BC
F+1 Token 0 End of line

Line
10+2 NextLine +2 -> 0x16
12+2 Line 15872

14+2 Token 0 End of Line
Line

->16+2 NextLine 0 End of program

6502 ASM
String ($0910)

->111+33 String BGPP...or\n\r\0$

Start ($09bb)
->1BC+2 lda #0x0e Fu� Character Set

1BE+3 jsr 0xffd2 C64 CHROUT
1C1+2 lda #>msg ($09)-> 0x0x111 -> ($0910)
1C3+2 sta $21 High Byte
1C5+2 lda #<msg ($10)-> 0x0x111 -> ($0910)
1C7+2 sta $20 Low Byte
1C9+3 jsr $09cc ca� printStr
1CC+1 rts Return to BASIC

Print String routine ($09CC)
1CD+2 ldy #0x0 Reset Y

Loop ($09CE)
->1CF+2 lda ($20) y Read in a character

1D1+2 cpy #$21 After 33 chars
1D3+2 beq +$b Jump to ExtraCr-> 0x1E0
1D5+2 cmp #$00 $00-terminated string
1D7+2 beq +$d Jump to Done-> 0x1E6
1D9+3 jsr $09eb Jump to printChar-> 0x1EC
1DC+1 iny Increment Y
1DD+3 jmp $09ce Jump to LOOP

ExtraCr
->1E0+3 jsr $09e6 Print a CR-> 0x1E7

1E3+3 jmp $09d4 Jump back into Loop-> 0x1CF
Done

->1E6+1 rts Return
PrintCR routine ($09e6)

->1E7+2 lda #13 Carriage Return
1E9+3 jmp $09eb Jump to printChar-> 0x1EC

PrintChar routine ($09eb)
->1EC+2 cmp #64

1EE+2 bcc +$2 Done
1F0+2 eor #0b00100000 Convert Char

Done
1F2+3 jmp $ffd2 C64 CHROUT

Line 10

Token 0x9E
Argument ' (2491)'

Token 0

NextLine +2
Line 15872

Token 0

NextLine 0

String BGPP...or\n\r\0$

lda #0x0e
jsr 0xffd2

lda #>msg
sta $21
lda #<msg
sta $20

jsr $09cc
rts

ldy #0x0

lda ($20) y
cpy #$21
beq +$b
cmp #$00
beq +$d
jsr $09eb
iny
jmp $09ce

jsr $09e6
jmp $09d4

rts

lda #13
jmp $09eb

cmp #64
bcc +$2
eor #0b00100000

jmp $ffd2

.. ..

..

..

..

..

..

..

..

..

.. ..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

11x

12x

13x

14x

1Bx

1Cx

1Dx

1Ex

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x2

01x

x6

11x

x1

12x

13x

14x

1Bx

xC

1Cx

xD

xF

1Dx

1Ex

x6

x7

xC

1Fx

x2

4C 46

7F 45

4C D2 FF

49 20

90 02C9 40

4C EB 09A9 0D

60

4C D4 0920 E6 09

4C CE 09C820 EB 09F0 0DC9 00F0 0BC0 21

B1

20

A0 00

6020 CC 0985 20A9 1085 21A9 09

20 D2

FF

A9 0E

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

00 00

00 003E 0002 00

00(2 4 9 1) \09E0A 004C 46

7F 45

00

E8 C7 FE E8 84 FE BE 11 7D E8 CE FE

90 60 B4 00 CD 16 61 EB B2 55 AA EOF

Figure 16: PRG’s side of Janus

65

Corrections
Those more familiar with Commodore BASIC than
I might know that the brackets around the argu-
ment to the SYS instruction are not required. The
KERNAL will simply ignore them when parsing the
line. Perhaps without the minimum size limitation
brought about by the bootloader, there might be a
way to save more space in a PRG/ELF hybrid.

As Janus began to take form, I needed to know
how many bytes were left that didn’t impact my
tests. I kept setting all the null bytes (excluding
padding for things like integers) to 58 while making
sure the functionality was unaffected. This makes
them stand out nicely in a hexdump so that I could
find the large unused chunks. However, as pointed
out by my editors, there was an unintended conse-
quence! All the way down at offset 0x19c are four
bytes of 58 and are labeled as padding to properly
align the GNU Multiboot 2 image to 64 bits. The
first two of these bytes are also the length of the com-
ment of the PKZip file. It pains me that I missed
the opportunity for some added neatness by setting
these two bytes back to 00, but the SHA256 hashes
have me stuck in a bind.

66

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

[COM/MBR] Start
0+2 jg next -> 0x47jg next

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x 7F 45

[MBR] printChar
->28+2 mov ah, 0xE Display Character (TTY Output)
2A+2 mov bh, 0 Write to Page 0
2C+2 mov bl, 0 Foreground Colour
2E+2 int 0x10 Graphics Interrupt
33+1 ret

mov ah, 0xE
mov bh, 0
mov bl, 0
int 0x10
ret

..
03x

x8

03x 90 90 90 C390 90 90

CD 10B3 00B7 00B4 0E

[COM/MBR] setCursor
->3A+1 pusha
3B+2 mov ah, 2 Set cursor position
3D+2 mov bh, 0 Page number
3F+2 mov dh, 2 Row number
41+2 mov dl, 0 Column number
43+2 int 0x10 Graphics Interrupt (no return value)
45+1 popa
46+1 ret

pusha
mov ah, 2
mov bh, 0
mov dh, 2
mov dl, 0
int 0x10

popa
ret

..
04x

xA

04x C361CD 10B2 00

B6

02

B7 00B4 0260

[ELF] Header
e_ident

0+4 EI_MAG \x7F ELF
5+1 EI_DATA None

EI_MAG \x7F ELF
EI_DATA

00x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x 32 34 39 31 29 00 0028209E0A 32 34 39 31 29 00 0028209E000A7F E L F

ELF64_Ehdr
10+2 e_type 2 ET_EXEC
12+2 e_machine 0x3E EM_X86_64

18+8 e_entry 0x4000AA -> 0xAA
20+8 e_phoff 0x4A -> 0x4A

34+2 e_ehsize 0x40
36+2 e_phentsize 0x38
38+2 e_phnum 1

e_type 2
e_machine 0x3E

e_entry 0x4000AA

e_phoff 0x4A

e_ehsize 0x40
e_phentsize 0x38
e_phnum 1

01x

02x

03x

01x

02x

03x 90 90 90 C3

B4 0E B7 00 B3 00 CD 10

00 00 00 00

01 0038 0040 0090 90 90 C3

B4 0E B7 00 B3 00 CD 10

4A 00 00 00 00 00 00 00
AA 00 40 00 00 00 00 00

00 00 00 003E 0002 00

[COM/MBR] next
->47+3 call bootloader -> 0x1B0call bootloader..x7 E8 66 01[ELF] ELF64_Phdr

->4A+4 p_type 1
4E+4 p_flags 5
52+8 p_offset 0
5A+8 p_vaddr 0x400000
6A+8 p_filesz 0x2B She�code + Strlen
72+8 p_memsz 0x2B She�code + Strlen

p_type 1
p_flags 5
p_offset 0
p_vaddr 0x400000
p_filesz 0x2B
p_memsz 0x2B

..
05x

06x

07x

xA

05x

06x

07x

X X X X X X X X

2B 00 00 00 00 00 00 00

2B 00 00 00 00 00

00 00

X X X X X X X X

00 00 40 00 00 00

00 00

00 00 00 00 00 00 00 00

05 00

00 00

01 00 00 00

[MBR] clearScreen
->7A+1 pusha
7B+2 mov ah, 6 "Scro� up window"
7D+2 xor al, al Number of Lines to Scro� (0x00 = Fu�)
7F+2 mov bh, 3 Colour attribute
81+2 xor ax, ax (CH,CL) = coords of Upper Left Corner
83+3 mov dx, 0x184f (DH,DL) = lower right corner
86+2 int 0x10 Graphics Interrupt (no return value)
88+1 popa
89+1 ret

pusha
mov ah, 6
xor al, al
mov bh, 3
xor ax, ax
mov dx, 0x184f
int 0x10

popa
ret

..
08x

xA

08x C361CD 10BA 4F 1831 C9

B7

03

30 C0B4 0660

[COM] printString
set CS=DS

->8A+1 push cs
8B+1 pop ds

Write string
8C+3 mov dx, 0x0211
8F+2 mov ah, 9 Write string to stdout
91+2 int 0x21 DOS interrupt

Exit(2)
93+3 mov ax, 0x4c02 4C=Exit 02= Ret Val
96+2 int 0x21 DOS interrupt

push cs
pop ds

mov dx, 0x0211
mov ah, 9
int 0x21

mov ax, 0x4c02
int 0x21

..

..

..

09x

xA

xC

09x

x3 CD 21B8 02 4C

CD 21

B4

09

BA 11 02

1F0E

[MBR] printString
98+1 pusha

loop
->99+1 lodsb Load char in (SI) to AL
9A+2 test al, al Check for nu�-byte
9C+2 jz .end -> 0xA6
9E+3 call printChar Print the char-> 0x28
A1+3 call delay Cheap animation e�ect-> 0x179
A4+2 jmp .loop -> 0x99

end
->A6+1 popa
A7+3 jmp waitForKeypress -> 0x1F5

pusha

lodsb
test al, al
jz .end
call printChar
call delay
jmp .loop

popa
jmp waitForKeypress

..

..

..

0Ax

x8

x9

0Ax

x6 E9 4B 0161

EB F3E8 D5 00

E8 87

FF

74 0884 C0AC

60

[ELF] 64b she�code
->AA+2 mov al, 1 WRITE
AC+3 mov di, ax STDOUT
AF+5 mov esi, 0x400111 bu�er-> 0x111
B4+2 mov dl, 0x32 strlen
B6+2 syscall

B8+2 mov al, 0x3C EXIT
BA+3 inc di ret 2
BD+2 syscall

mov al, 1
mov di, ax
mov esi, 0x400111
mov dl, 0x32
syscall

mov al, 0x3C
inc di
syscall

..
0Bx

xA

0Bx 0F 0566 FF C7B0 3C0F 05B2 32

BE

11 01 40 00

66 89 C7B0 01

[Rar] Magic
BF+7 Signature Rar!^Z^G\0 EOF BELLSignature Rar!^Z^G\0..

0Cx

xF

0Cx

R

a r ! 1A 07 \0 [Rar] Main Header
C6+2 CRC32 0x90CF CRC32(header) & 0xFFFF
C8+1 BlockType 0x73 HEAD_MAIN
CB+4 BlockSize 0xD

CRC32 0x90CF
BlockType 0x73
BlockSize 0xD

..
0Dx

x6

0Dx

00

00 00 00

00 00 00

00 00 00

0D 00 00 0000 0073CF 90

[Rar] File Header
D3+2 CRC 0x924A CRC32(header) & 0xFFFF
D5+1 BlockType 0x74 HEAD_FILE
D6+2 Flags 0x8020 LHD_WINDOW128 LONG_BLOCK
D8+2 BlockSize 0x3E

DA+4 CompSize 0x33
DE+4 UncompSize 0x51
E2+1 HostOS 2 HOST_WIN32
E3+4 CRC32 0x8AC49CB1 (contents)
E7+4 Timestamp 0xC286CA0 1/8/1986 13:37
EB+1 Version 0x14 VERSION_2_0
EC+1 Method 0x30 UNCOMPRESSED
ED+2 FileNameLen 0x1D
EF+4 Attributes 0x20 ARCHIVE

CRC 0x924A
BlockType 0x74
Flags 0x8020
BlockSize 0x3E

CompSize 0x33
UncompSize 0x51
HostOS 2
CRC32 0x8AC49CB1
Timestamp 0xC286CA0
Version 0x14
Method 0x30
FileNameLen 0x1D
Attributes 0x20

..
0Ex

0Fx

x3

0Ex

0Fx

20

00 00 00

1E 003014A0 6C 28 0CB1 9C C4 8A02

33 00

00 00

33 00 00 003E 0020 80744A 92

[Zip] LocalFileHeader / [Rar] Filename
->F3+4 Signature PK\3\4
F7+2 VersionNeeded 0xA
101+4 CRC32 0x2CD1A660 (contents)
105+4 CompSize 0x30
109+4 UncompSize 0x30

Signature PK\3\4
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30

..
10x

11x

x3

10x

11x

00

00

00 00

X X X

X

00 0000 00

00

00

00 0030 00 00 0030 00 00 0060 A6 D1 2C

X X X

X

00 0000 000A 00P K 03 04

[A�] String ($0910)
->111+33 String BGPP...or\n\r\0$String BGPP...or\n\r\0$..

12x

13x

14x

x1

12x

13x

14x

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $ [Rar] Archive End
144+2 CRC 0x3DC4 CRC(header) & 0xFFFF
146+1 Block Type 0x7B HEAD_ENDARC
147+2 Flags 0x4000
149+2 Block Size 7

CRC 0x3DC4
Block Type 0x7B
Flags 0x4000
Block Size 7

..x4 07 0000 407BC4 3D [Zip] Central Directory
->14B+4 Signature PK\1\2
151+2 VersionNeeded 0xA
15B+4 CRC32 0x2CD1A660
15F+4 CompSize 0x30
163+4 UncompSize 0x30
167+2 FileNameLen 0xF
175+4 LFHOffset 0xF3 -> 0xF3

Signature PK\1\2
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30
FileNameLen 0xF
LFHOffset 0xF3

..
15x

16x

17x

xB

15x

16x

17x X X X X

X

X

X X00 0000 00

X X X X00 0000 00

00

00

F3 00 00 00X X X X

X

X

X X00 0000 000F 0030 00 00 00

30

00 00 00

60 A6 D1 2CX X X X00 0000 000A 00

00

00

P K 01 02

[MBR] delay
->179+1 pusha
17A+2 mov ah, 0x86 BIOS Wait
17C+2 mov al, 0 Unused
17E+3 mov cx, 1 Seconds
181+3 mov dx, 0 Mi�iseconds
184+2 int 0x15 Memory Interrupt
186+1 popa
187+1 ret

pusha
mov ah, 0x86
mov al, 0
mov cx, 1
mov dx, 0
int 0x15

popa
ret

..
18x

x9

18x C361CD 15BA 00 00

B9 01

00

B0 00B4 8660

(Status Returned in AH)

[ZIP] End of Central Directory
188+4 Signature PK\5\6
192+2 EntryCount 1
194+4 Size 0x3D
198+4 OffsetCD 0x14B -> 0x14B

Signature PK\5\6
EntryCount 1
Size 0x3D
OffsetCD 0x14B

..
19x

x8

19x X X58 58

X X\0 \0

X X4B 01 00 003D 00 00 0001 0058 58

X X\0 \0P K 05 06

[GNU] Multiboot 2.02
1A0+4 Magic 0xE85250D6
1A4+4 Architecture 0 i386
1A8+4 Header length 0x100
1AC+4 Checksum 0x17ADAE2A

Magic 0xE85250D6
Architecture 0
Header length 0x100
Checksum 0x17ADAE2A

..
1Ax

xE

1Ax

X X

2A AE AD 1700 01 00 0000 00 00 00D6 50 52 E8

X X

[COM/MBR] Bootloader
->1B0+3 call clearScreen -> 0x7A
1B3+3 call setCursor -> 0x3A
1B6+3 mov si, msg -> 0x111
1B9+3 call printString -> 0x8A

call clearScreen
call setCursor
mov si, msg
call printString

1Bx1Bx E8 CE FEBE 11 7DE8 84 FEE8 C7 FE

[PRG] 6502 ($09bb)
->1BC+2 lda #0x0e Fu� Character Set
1BE+3 jsr 0xffd2 C64 CHROUT
1C1+2 lda #>msg ($09)-> 0x111 -> ($0910)
1C3+2 sta $21 High Byte
1C5+2 lda #<msg ($10)-> 0x111 -> ($0910)
1C7+2 sta $20 Low Byte
1C9+3 jsr $09cc Ca� printStr
1CC+1 rts Return to BASIC

PrintCR routine ($09e6)
->1E7+2 lda #13 Carriage Return
1E9+3 jmp $09eb Jump to printChar-> 0x1EC

PrintChar routine ($09eb)
->1EC+2 cmp #64
1EE+2 bcc +$2 Done
1F0+2 eor #0b00100000 Convert Char

Done
->1F2+3 jmp $ffd2 C64 CHROUT

lda #0x0e
jsr 0xffd2

lda #>msg
sta $21
lda #<msg
sta $20
jsr $09cc

rts

lda #13
jmp $09eb

cmp #64
bcc +$2
eor #0b00100000

jmp $ffd2

..

..

..

.. ..

1Cx

1Fx

xC

1Cx

x7

xC

1Fx

x2 4C D2 FF

49 20

90 02C9 40

4C EB 09A9 0D

6020 CC 0985 20A9 1085 21A9 09

20 D2

FF

A9 0E

Print String routine ($09CC)
->1CD+2 ldy #0x0 Reset Y

Loop ($09CE)
->1CF+2 lda ($20),` y Read in a character
1D1+2 cpy #$21 After 33 chars
1D3+2 beq +$b Jump to ExtraCr-> 0x1E0
1D5+2 cmp #$00 $00-terminated string
1D7+2 beq +$d Jump to Done-> 0x1E6
1D9+3 jsr $09eb Jump to printChar-> 0x1EC
1DC+1 iny Increment Y
1DD+3 jmp $09ce Jump to LOOP

ExtraCr
->1E0+3 jsr $09e6 Print a CR-> 0x1E7
1E3+3 jmp $09d4 Jump back into Loop-> 0x1CF

Done
->1E6+1 rts Return

ldy #0x0

lda ($20), y
cpy #$21
beq +$b
cmp #$00
beq +$d
jsr $09eb
iny
jmp $09ce

jsr $09e6
jmp $09d4

rts

..

..

..

1Dx

1Ex

xD

xF

1Dx

1Ex

x6 60

4C D4 0920 E6 09

4C CE 09C820 EB 09F0 0DC9 00F0 0BC0 21

B1

20

A0 00

-> 0x1CD ($09CC)

[COM/MBR] waitForKeypress
->1F5+1 nop Single Byte Padding (NOP)
1F6+1 pusha
1F7+2 mov ah, 0x0 Get Keystroke
1F9+2 int 0x16 Keyboard Interrupt
1FB+1 popa
1FC+2 jmp bootloader -> 0x1B0

nop
pusha

mov ah, 0x0
int 0x16

popa
jmp bootloader

..x5 EB B261CD 16B4 006090

MBR signature
1FE+2 Signature 0x55AASignature 0x55AA..xE 55 AA EOF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

C64 PRG (loaded at $0801)
C64 basic

Line
4+2 Line 10

6+1 Token 0x9E SYS
7+8 Argument ' (2491)' $9bb-> 0x1BC
F+1 Token 0 End of line

Line
10+2 NextLine +2 -> 0x16
12+2 Line 15872

14+2 Token 0 End of Line
Line

->16+2 NextLine 0 End of program

Line 10

Token 0x9E
Argument ' (2491)'

Token 0

NextLine +2
Line 15872

Token 0

NextLine 0

.. ..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x2

01x

x6

4C 46
7F 45

00 00

00 003E 0002 00

00(2 4 9 1) \09E0A 004C 46
7F 45

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

04A

07A

08A

098

0AA

0BF

0F3

14B

179

188

1B0

1BC

1F5
1FE

03A

028

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

018

(no return value)

1CD

1E7

000

LOAD"JANUS.COM",8

SEARCHING FOR JANUS.COM
LOADING
READY.
LIST

10 SYS (2491)
15872
READY.

Figure 17: All sides of Janus

67

22:12 Let’s bide our time for a brand new adventure!
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC∥GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

So today, in that spirit of exploration and won-
der, I pass around the collection plate and ask you,
neither for paper money nor pocket change, but for
nifty projects and the clever tricks that make them
possible.

Blessed be the hackers who seek to share their
knowledge with the world. Maybe share a techni-
cal story from the good old days. Maybe share a
clever trick from the modern day, such as how to
improve TMS320 support in your favorite disassem-
bler or how to reverse engineer a binary format using
custom visualizations.

May you be blessed with the generosity to share
your runnable source code and buildable hardware
schematics, so that others may build upon your
work. May you be blessed with the patience to
explain how you got to your result, so that others
may learn from your experience. Teach me to iden-
tify those things that only look intimidating without
context, and arm me with the tools to conquer those
problems.

Give me these tricks and techniques in an ASCII
textfile, or UTF-8 if your language insists, includ-
ing high resolution figures as separate PNG or PDF
files as an email to pastor@phrack.org. We’ve
taken submissions hand drawn on napkins, but we’d
like to avoid that when possible. My gang and I
will clean it up, typeset it in TEX, index it and
print it for the world. We’ll happily translate from
French, Spanish, Portuguese, German, Ukrainian,
Hungarian, Hebrew, Serbo-Croation, and Southern
Appalachian.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

68

