
22:11 Janus Polyglot
by Harvey Phillips

Who left among you hold any faith in the empty
promises of filetypes? Who is yet to accept to that
beauty is in the eye of the parser? I hope that this
gentle stroll through 512 harmless looking bytes will
dispel any remaining myths that you, dear neigh-
bours, continue to clutch to your collective chests.

Regular readers of this fine journal may have
seen my and @netspooky’s articles in PoC∥GTFO
21:09 and 21:10 respectively. Those were write-
ups for the Binary Golf Grand Prix back in 2020
where the challenge was to produce the smallest
palindromic binary. 2021’s edition of this wonder-
ful challenge pitted competitors against one another
in a battle to produce the smallest polyglot bi-
nary. There were two possible avenues of attack that
were scored separately: you could either connive the
smallest polyglot that was executable as a binary, or
rack up points for every parser that successfully pro-
cessed your entry. We decided to normalize scores
by filesize for this second category, so that the em-
phasis was still on as small a collection of bytes as
possible.

Feeling drawn towards this latter category, and
seeing as the competition’s name begins with the
word “binary,” I chose an x86 bootloader as my host
binary. For those who haven’t delighted in the plea-
sures of 16-bit real-mode assembly, a bootloader for
x86 machines is a 512-byte blob that ends in 0x55aa.
Execution begins at offset 0x0. That’s it.

Ordinarily such a bootloader would be responsi-
ble for loading some more bytes into memory from
a hard drive and jumping to it, maybe setting up
a stack or other registers along the way. The nice
thing about choosing an essentially format-less for-
mat is that I can shift around the code and data
portions of the bootloader to make way for what is
to come. I just have to fit in an appropriate jmp
instruction to keep the execution flow flowing.

So, what does this bootloader do? I thought it’d
be fun to have a single string in the polyglot that
I could either print for executables, or extract for
archive formats. With this in mind, I reused some
old 16-bit real mode assembly I wrote for printing
strings to the screen. Printing a string to stdout in
Linux is very straightforward thanks to the bless-
ing of syscalls. (We do it later on with just a few

lines.) However, 16-bit real mode affords us no such
niceties.

The very rough analogue of the syscall in 16-bit
x86 is the interrupt. Your BIOS may be getting old
now, but it still offers a wealth of prewritten rou-
tines for you to use. Calling a routine via an inter-
rupt is strikingly similar (for good reason!) to using
a syscall: set a value corresponding to the routine
you want in ah, arguments in bl, bh, etc, and throw
the interrupt. As an example, let’s look at the very
first of my routines that the bootloader portion will
call into, clearScreen:

1 pusha ; Save state
mov ah, 0x6 ; "Scroll Up Window" routine

3 xor al, al ; Number of lines to scroll
; (0x0 is the whole screen)

5 mov bh, 0x03 ; Colours: fg black , bg cyan
xor cx, cx ; (CH ,CL) = coordinates of

7 ; upper left corner
mov dx, 0x184f ; (DH,DL) = coordinates of

9 ; lower right corner
int 0x10 ; Graphics Interrupt

11 popa ; Restore state
ret

Pretty straightforward, right? Routine 0x6 from
interrupt 0x10 is Scroll Up Window. We set some
arguments in the other registers and then kick things
off with int 0x10. The reason we need to scroll the
screen at all is because it’s usual for the BIOS to
have left some text in the screen buffer as it loads,
and we want to get rid of it.

Once we’ve cleared the screen, we use another
BIOS routine to set the cursor position, then we
store the memory location of our string in the si reg-
ister before calling our printString function. (Yes
— the BIOS does not provide a routine for printing
strings!) However, it’s easy enough as we are pro-
vided with a Display Character (TTY Output) rou-
tine by the Graphics Interrupt 0x10. So, we simply
loop over the bytes of our string, calling this BIOS
routine each time until we hit a NULL byte. Just
for added panache, I inserted a delay routine in be-
tween printing each character.

Running the polyglot in QEMU with
qemu-system-x86_64 janus.com will spell out the
string.55

55unzip pocorgtfo22.pdf janus.zip

52

COM Shenanigans
How different really is a bootloader to a COM file?
A COM executable doesn’t need that pesky 0x55aa
at the end, and there isn’t a hard byte count to deal
with. However, if you take an x86 bootloader like I
had started off with and run it in dosbox, you don’t
see any output. No errors either, but what has hap-
pened to my beautiful string that the BIOS prints?
The answer lies in the console buffer. Despite its
lowly appearance to today’s behemoths, DOS is in-
deed an operating system (hence the letters O and
S), and it does perform some slight attempts at
memory management. The console buffer where we
enter commands and see their output in DOS is not
mapped to the same memory as the BIOS’s TTY
output buffer. This means that our assembly is still
writing our string, but to somewhere else in memory
that doesn’t show on the screen!

Fortunately, one of the many blessings of DOS
is interrupt 0x21. One of the routines provided by
this interrupt gives the ability to write a string to the
DOS equivalent of stdout. The only thing we need to
be aware of is that this routine expects such strings
to be $-terminated. Yet more fortune is at our door
upon discovering that interrupt 0x21 isn’t mapped
to anything by the BIOS — int 0x21 doesn’t do
anything if we aren’t in DOS!

By modifying our printString routine in our
source, we can first print the string in a DOS man-
ner, and then in a BIOS manner. All we need to
do is append a $ to our string (after the null-byte
that the BIOS routine looks for so we don’t see it
in either output), and remember that the offset to
the string in memory is different in DOS than it is
in BIOS.

While I used nasm for the fine-grained byte con-
trol it gave me, I opted to use its org directive to
tell it to compute offsets relative to 0x7c00, the
bootloader load address on x86 machines. This
means that any other offsets to the string for non-
bootloader sections of executable code would need
to be calculated manually. For DOS, this is no has-
sle as binaries are loaded at address 0x100, meaning
I only have to add 0x100 to whatever the file offset
of my string is.

So, the printString routine ends up like this:

printString:
2 ; DOS Version

push cs ; Set CS=DS
4 pop ds

mov dx, 0x211 ; Offset to string
6 mov ah, 0x9 ; 0x9: Write to DOS stdout

int 0x21 ; DOS Interrupt
8 mov ax, 0x4c02 ; 0x4c: DOS Exit

; 0x02: Return Value
10 int 0x21 ; DOS Interrupt

12 ; BIOS Version
pusha

14 .loop:
lodsb ; Load char from SI to AL

16 test al, al ; Check for null -byte
jz .end

18 call printChar ; Print it.
call delay ; Lazy animation effect

20 jmp .loop
.end:

22 popa
jmp waitForKeypress ; Will loop if held

One final caveat for DOS fun, we need the file to
have a .com file extension! Fortunately, none of the
other parsers that janus supports had a file exten-
sion as a hard requirement.

We can test the COM portions work as expected
by running janus.com under DOSBox.

ELF Shenanigans

From chaos, evolved structure — and so we shall
also find that from the disarray of real-mode, we are
able to find order in the ELF specification.

An ELF file contains a great deal of structure,
but many fields in its various headers are ignored by
the Linux kernel’s ELF loader. We can play this to
our advantage by populating those fields with con-
tent for other parsers! For a recent overview, I sug-
gest that readers take a look at tmp.0ut’s Issue 1:1
where I peruse the various fields in the ELF and
program headers, foraging for those that we are free
to do with as we like — without affecting execution.
For a more fiendish appraisal of these fields, I highly
recommend @netspooky’s series of blogs chronicling
his journey to produce an 85-byte ELF.56

56https://n0.lol/ebm/1.html

53

[COM/MBR] Start
0+2 jg next -> 0x47

[MBR] printChar
->28+2 mov ah, 0xE Display Character (TTY Output)

2A+2 mov bh, 0 Write to Page 0
2C+2 mov bl, 0 Foreground Colour
2E+2 int 0x10 Graphics Interrupt
33+1 ret

[COM/MBR] setCursor
->3A+1 pusha

3B+2 mov ah, 2 Set cursor position
3D+2 mov bh, 0 Page number
3F+2 mov dh, 2 Row number
41+2 mov dl, 0 Column number
43+2 int 0x10 Graphics Interrupt
45+1 popa
46+1 ret

[COM/MBR] next
->47+3 call bootloader -> 0x1B0

[COM/MBR] clearScreen
->7A+1 pusha

7B+2 mov ah, 6 "Scro� up window"
7D+2 xor al, al Number of Lines to Scro� (0x00 = Fu�)
7F+2 mov bh, 3 Colour attribute
81+2 xor ax, ax (CH,CL) = coords of Upper Left Corner
83+3 mov dx, 0x184f (DH,DL) = lower right corner
86+2 int 0x10 Graphics Interrupt
88+1 popa
89+1 ret

[COM] printString
set CS=DS

->8A+1 push cs
8B+1 pop ds

Write string
8C+3 mov dx, 0x0211
8F+2 mov ah, 9 Write string to stdout
91+2 int 0x21 DOS interrupt

Exit(2)
93+3 mov ax, 0x4c02 4C=Exit 02= Ret Val
96+2 int 0x21 DOS interrupt

[MBR] printString
98+1 pusha

loop
->99+1 lodsb Load char in (SI) to AL

9A+2 test al al Check for nu�-byte
9C+2 jz .end -> 0xA6
9E+3 call printChar Print the char-> 0x28
A1+3 call delay Cheap animation e�ect-> 0x179
A4+2 jmp .loop -> 0x99

end
->A6+1 popa

A7+3 jmp waitForKeypress -> 0x1F5
String

->111+33 String BGPP... \n\r\0$

[MBR] delay
->179+1 pusha

17A+2 mov ah, 0x86 BIOS Wait
17C+2 mov al, 0 Unused
17E+3 mov cx, 1 Seconds
181+3 mov dx, 0 Mi�iseconds
184+2 int 0x15 Memory Interrupt
186+1 popa
187+1 ret

[COM/MBR] Bootloader
->1B0+3 call clearScreen -> 0x7A

1B3+3 call setCursor -> 0x3A
1B6+3 mov si, msg -> 0x111
1B9+3 call printString -> 0x8A

[COM/MBR] waitForKeypress
->1F5+1 nop padding

1F6+1 pusha
1F7+2 mov ah, 0x0 Get Keystroke
1F9+2 int 0x16 Keyboard Interrupt
1FB+1 popa
1FC+2 jmp bootloader -> 0x1B0

[MBR] signature
1FE+2 Signature 0x55AA

jg next

mov ah, 0xE
mov bh, 0
mov bl, 0
int 0x10
ret

pusha
mov ah, 2
mov bh, 0
mov dh, 2
mov dl, 0
int 0x10

popa
ret

call bootloader

pusha
mov ah, 6
xor al, al
mov bh, 3
xor ax, ax
mov dx, 0x184f
int 0x10

popa
ret

push cs
pop ds

mov dx, 0x0211
mov ah, 9
int 0x21

mov ax, 0x4c02
int 0x21

pusha

lodsb
test al al
jz .end
call printChar
call delay
jmp .loop

popa
jmp waitForKeypress

String BGPP... \n\r\0$

pusha
mov ah, 0x86
mov al, 0
mov cx, 1
mov dx, 0
int 0x15

popa
ret

call clearScreen
call setCursor
mov si, msg
call printString

nop
pusha

mov ah, 0x0
int 0x16

popa
jmp bootloader

Signature 0x55AA

..

..

..

..

..

..

..

..

..

..

..

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

02x

03x

04x

07x

08x

09x

0Ax

11x

12x

13x

14x

17x

18x

1Bx

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

02x

x8

03x

xA

04x

x7

07x

xA

08x

xA

xC

09x

x3

x8

x9

0Ax

x6

11x

x1

12x

13x

14x

17x

x9

18x

1Bx

1Fx

x5

xE

90 90 90

55 AA

EB B261CD 16B4 006090

E8 CE FEBE 11 7DE8 84 FEE8 C7 FE

C361CD 15BA 00 00

B9 01

00

B0 00B4 8660

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

E9 4B 0161

EB F3E8 D5 00

E8 87

FF

74 0884 C0AC

60

CD 21B8 02 4C

CD 21

B4

09

BA 11 02

1F0E

C361CD 10BA 4F 1831 C9

B7

03

30 C0B4 0660

E8 66 01

C361CD 10B2 00

B6

02

B7 00B4 0260

C390 90 90

CD 10B3 00B7 00B4 0E

7F 45 4C 46 0A 00 9E 20 28 32 34 39 31 29 00 00

4A 00 00 00 00 00 00 00

40 00 38 00 01 00

01 00 00 00 05 00

00 00 2B 00 00 00 00 00 00 00

B0 01 66 89 C7 BE

00

C4 3D 7B 00 40 07 00 50 4B 01 02 00

58 58 58 58 58 F3 00 00 00

50 4B 05 06 00 00 58 58

A9 0E 20 D2

49 20 4C D2 FF

EOF

Figure 10: COM and MBR’s side of Janus

54

For the attendees in the back who are not fully
acquainted with the internals of ELF, here is very
brief overview of the parts relevant to us:

• The ELF header (\x7fELF) must begin at off-
set 0x0

• The e_phoff field of the ELF header is a file
offset to first program header

• The first (and in our case, only) program
header will detail where our x64 Linux assem-
bly can be found, and where it is to be loaded
in memory

The important takeaway here is that, although
our ELF header has to begin at offset 0x0, the pro-
gram header can appear much later because we pro-
vide the ELF parser with an offset to it. However,
we do have a potential issue: we already have some-
thing at offset 0x0, the entry point to the BIOS and
COM assembly!

The first few bytes of the ELF header (and there-
fore any valid ELF file) are \x7fELF, which disas-
semble as 16-bit real-mode instructions to:
jg 0x47
dec sp
inc si

So, upon our dutiful BIOS loading this particu-
lar collection of bytes into memory and jumping to
offset 0x0, it will immediately jump to offset 0x47,
thanks to how the EFLAGS register is initialized
at boot. (At least in SeaBIOS that QEMU uses —
I’d be very interested if any neighbours know of any
variance in this observation!) Therefore, all we are
required to do in order to overcome this calamity is
move our real-mode assembly elsewhere, and place
yet another jmp to it at offset 0x47. This way, after
bouncing around a few times, our BIOS and DOS
functionality is preserved.

Populating the beginning of our file with an ELF
header, and armed with a list of fields that we know
are ignored by the Linux loader, we can fill in sev-
eral gaps with more interesting things. At this stage
of my design, I simply left these fields with X’s so
that I could come back later and put something fun
in its place. Several of the real-mode routines are
small enough that they fit in overlooked uint64_t
fields. Can you spot them all?

Lastly, an ELF that presents itself as executable
in its header requires something to execute! Run-
ning with the same theme of printing the string al-
ready present in the file, I used:

1 mov al, 0x1 ; SYS_WRITE
mov di, ax ; Write to stdout

3 ; (file descriptor 1)
mov esi , 0x400111 ; Virtual memory address of the

5 ; string: 0x400000 + file offset
mov dl, 0x32 ; String length

7 syscall
mov al, 0x3c ; SYS_EXIT

9 inc di ; Return value 0x2
syscall

Notice that we have to calculate the virtual ad-
dress of the string manually again! The string ap-
pears at file offset 0x111, and our ELF is loaded to
address 0x400000. Adding the two gives us the right
address.

As a final touch, we can now set the size of our
file to be loaded in the p_filesz and p_memsz fields
of the program header, set p_offset to 0x0 so we
load the entire 512 bytes, and at long last we can set
e_entry so that the Linux loader knows what vir-
tual memory address to jump to after loading our
ELF into memory.

To test things are as they should be, we can run
the binary in any x64 Linux distro.

RAR Shenanigans

Long time neighbours will no doubt have seen sev-
eral polyglots over the years incorporating the RAR
file format. It was my intention all along for each
of the incorporated file formats to make use the
same string over and over again, either printing it
or decompressing to it. Fortunately, RAR (and as
we’ll see later, ZIP) supports containing files with-
out compression, meaning we can just dress up our
string with the appropriate structures and unrar
should play fair!

For anyone looking to get a decent handle on the
RAR format, Ange Albertini’s poster on page 57 is
an invaluable first step. Looking at this, we see a
reasonably straightforward structure to the file. One
of the several fun things about the RAR format is
that the Rar! magic can appear at any offset in the
file, which means we aren’t bound to place the RAR
part of the file at any particular location.

However, unlike in the executable portions of
janus, we can’t point the unrar parser to any lo-
cation we like for our (un)compressed data. Indeed,
the RAR File Header must immediately prepend the
data, and the Archive End structure immediately
follows it. This is one of the first hard restrictions
on our binary. We have a whole 0x3d bytes before
our string, and another 0x7 bytes after it. If we

55

Elf header
e_ident

0+4 EI_MAG \x7F ELF
5+1 EI_DATA None

ELF64_Ehdr
10+2 e_type 2 ET_EXEC
12+2 e_machine 0x3E EM_X86_64
14+4 e_version Ignored
18+8 e_entry 0x4000AA -> 0xAA
20+8 e_phoff 0x4A -> 0x4A
34+2 e_ehsize 0x40
36+2 e_phentsize 0x38
38+2 e_phnum 1

ELF64_Phdr (Program header)
->4A+4 p_type 1 LOAD

4E+4 p_flags 5 XWR
52+8 p_offset 0
5A+8 p_vaddr 0x400000
6A+8 p_filesz 0x2B She�code + Strlen
72+8 p_memsz 0x2B She�code + Strlen

x64 code
->AA+2 mov al, 1 WRITE

AC+3 mov di, ax STDOUT
AF+5 mov esi 0x400111 bu�er-> 0x111
B4+2 mov dl, 0x32 strlen
B6+2 syscall

B8+2 mov al, 0x3C EXIT
BA+3 inc di ret 2
BD+2 syscall

String
->111+33 String BGPP... \n\r\0$

EI_MAG \x7F ELF
EI_DATA

e_type 2
e_machine 0x3E
e_version
e_entry 0x4000AA
e_phoff 0x4A
e_ehsize 0x40
e_phentsize 0x38
e_phnum 1

p_type 1
p_flags 5
p_offset 0
p_vaddr 0x400000
p_filesz 0x2B
p_memsz 0x2B

mov al, 1
mov di, ax
mov esi 0x400111
mov dl, 0x32
syscall

mov al, 0x3C
inc di
syscall

String BGPP... \n\r\0$

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

02x

03x

05x

06x

07x

0Ax

0Bx

12x

13x

14x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

02x

03x

xA

05x

06x

07x

0Ax

xA

0Bx

x1

12x

13x

14x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

X X X X X X X X

00 B602 B760 B490 90 90 C3

B4 0E B7 00 B3 00 CD 10

32 34 39 31 29 00 0028209E0A

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

0F 0566 FF C7B0 3C0F 05B2 32

BE

11 01 40 00

66 89 C7B0 01

2B 00 00 00 00 00 00 00

2B 00 00 00 00 00

00 00

X X X X X X X X

00 00 40 00 00 00

00 00

00 00 00 00 00 00 00 00

05 00

00 00

01 00 00 00

00 B602 B760 B401 0038 0040 0090 90 90 C3

B4 0E B7 00 B3 00 CD 104A 00 00 00 00 00 00 00

AA 00 40 00 00 00 00 0000 00 00 003E 0002 00

32 34 39 31 29 00 0028209E000A7F E L F

FF E8 D5 00 EB F3 61 E9 4B 01

52

Figure 11: ELF’s side of Janus

56

EOF

Signature
Main header

File header

End block
Roshal archive

a RAR v4 file

 0+7 Magic Rar! EOF BEL NUL

 7+2 CRC16 0x90CF
 9+1 BlockType 0x73 Main header
 A+2 Flags 0x0000
 C+2 BlockSize 13
 E+6 PosAV 0 No AV signature

14+2 CRC16 0x7315
16+1 BlockType 0x74 File header
17+2 Flags 0x8020 Win128 / LongBlock
19+2 BlockSize 0x28
1B+4 CompSize 4
1F+4 UncompSize 4
23+1 Host OS 2 Win32
24+4 CRC32 0x982134A1
28+4 Timestamp 2020-01-18 19:08:40
2C+1 Version 0x1D v2.0
2D+1 CompMethod 0x30 Uncompressed
2E+2 FilenameLen 8
30+4 Attributes 0x20 Archive
34+8 Filename rar4.txt

3C+4 File data RAR4

40+2 CRC16 0x3DC4
42+1 BlockType 0x7b End of archive
43+2 Flags 0x4000
45+2 BlockSize 7

Magic Rar! EOF BEL NUL

CRC16 0x90CF
BlockType 0x73
Flags 0x0000
BlockSize 13
PosAV 0

CRC16 0x7315
BlockType 0x74
Flags 0x8020
BlockSize 0x28
 CompSize 4
 UncompSize 4
 Host OS 2
 CRC32 0x982134A1
 Timestamp
 Version 0x1D
 CompMethod 0x30
 FilenameLen 8
 Attributes 0x20

 Filename rar4.txt

File data RAR4

CRC16 0x3DC4
BlockType 0x7b
Flags 0x4000
BlockSize 7

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

+7

1x

+4

2x

3x

+C

4x 07 0000 407BC4 3D

R A R 4

r a r 4 . t x t20 00 00 00

08 00301D14 99 32 50A1 34 21 9802

04

00 00 00

04 00 00 0028 0020 807415 73

00 00

00 00 00 00

0D 0000 0073CF 90

R a r ! ^Z ^G \0

Name: rar4.txt
Type: File
Size: 4
Packed size: 4
Ratio: 100%
Modified: 2020-01-18 19:08:40,000000000
Attributes: ..A....
CRC32: 982134A1
Host OS: Windows
Compression: RAR 1.5(v29) -m0 -md=128K

Figure 12: Ange Albertini’s Poster on RAR Format

want to relocate our string later, we have to move
all these surrounding bytes with it.

There is one slight loophole here that we will cer-
tainly play to our advantage when it comes to ZIP
shenanigans: the field at the end of the File Header,
just before our string begins, is the filename. Ordi-
narily, the filename would be just that, the filename.
There is even a separate field for the filename length,
so we don’t have to null-terminate it or anything like
that. It turns out that the filename can actually be
anything we want—including non-printable charac-
ters!

There is a pretty big downside to all of this RAR
business. Although we control the size of the data
in the File Header, the unrar parser will not tol-
erate any junk between the end of the compressed
data and the start of the Archive End. Therefore,
extracting our string with unrar will include the
\n\r\0$ bytes in its output. I thought about possi-
ble ways around this due to its esthetically displeas-
ing nature, but it seems to be a necessary evil.

There were two major stumbling blocks I found
along the way. The first was the CRC. In the for-
mat specification, it occupies the top two bytes in

each of the Main Header, File Header and Archive
End structures. Leaving these bytes as NULLs made
unrar complain about a CRC error, so I was reason-
ably confident that the rest of the bytes were cor-
rect. I had seen in various sources that the CRC
was a CRC16, but after trying several times with
different regions of bytes, and different polynomials,
I couldn’t find anything that worked.

Eventually, I resorted to RTFM’ing and I
dragged up the UnRAR sourcecode. This is found
in rawread.cpp.

// RAR 1.5 block CRC.
2 uint RawRead :: GetCRC15(bool ProcessedOnly) {

if (DataSize <=2)
4 return 0;

uint HeaderCRC=CRC32(0xffffffff ,&Data[2],
6 (ProcessedOnly ? ReadPos:DataSize) -2);

return ~HeaderCRC & 0xffff;
8 }

After smacking my head against the desk a few
times, I tried computing the CRC32 of the Main
Header, and chopped off the top two bytes to ob-
tain 0x90cf—precisely the CRC of the Main Header
from the reference I used. A truncated CRC32 is
most certainly not the same as a CRC16! Had I

57

begun by looking at the unrar sourcecode instead
of trying to brute force various CRC16 polynomi-
als to find a match where there was none, I would
have saved myself several evenings. Fortunately, the
python zlib library offers a crc32() function which
precisely computes the CRC we need:

>>> header = bytes.fromhex(
’7300000 d00000000000000 ’)

>>> hex(zlib.crc32(header) & 0xffff)
’0x90cf ’

The second confusing feature of the RAR format
was the datetime format in the timestamp field of
the File Header. Eventually, I found it documented
in one of the Kaitai Struct examples.57 It’s just a
bitfield, common in DOS-land. Both the date and
time occupy a uint16 each.

year = ((date & 0b1111111000000000) >> 9) + 1980
month = (date & 0b0000000111100000) >> 5
day = (date & 0b0000000000011111)
hour = (time & 0b1111100000000000) >> 11
minute = (time & 0b0000011111100000) >> 5
second = (time & 0b0000000000011111) * 2

To be confident things are working properly,
unrar p janus.com happily produces our string,
with the unfortunate extra $ on the end.

ZIP Shenanigans

If you are not yet acquainted with the details of the
PKZIP format, and felt that incorporating a RAR
into our polyglot was intricate, I have bad news for
you. But the PKZIP format actually lends itself
very nicely to polyglots! The thing that makes it
unique (at least in my experience) is that a proper
PKZIP parser, will process a file backward. Typi-
cally, we think of parsers are looking for some magic
value which indicates the start of the data it should
parse. PKZIP flips everything on its head and in-
stead looks for the End of Central Directory signa-
ture, which comes at the end of the file.

In this End of Central Directory, there is a
file offset and size of the Central Directory. The
Central Directory holds all the information about
our (un)compressed files contained within, includ-
ing their filenames, and CRCs. (This time around,
it’s just a CRC32.) Also included in this directory
are offsets to our data, which is always prepended
by a Local File Header.

Let’s take a moment to ponder this last point.
Our data (the string we keep re-using) must be
prepended by the PKZIP Local File Header. But
we’ve already added our RAR shenanigans which
also required our data being prepended by some-
thing. (In the case, it was the similarly named File
Header.) How can we reconcile these two facts? The
trick lies in something I hinted at earlier! The final
field of the RAR File Header, which comes immedi-
ately prior to the start of our string, is the filename
of the to-be-extracted file. Seeing as we aren’t too
fussed by actually extracting this string to a file with
unrar, we can simply use this filename field to store
the PKZIP Local File Header! The downside is that
we’ll end up with a nasty filename in our directory
if we run unrar with the x switch. (Try unrar p
janus.com instead.) This seems like a small price
to pay in order for RAR and PKZIP to peacefully
coexist!

As other devotees of weird machines will no
doubt be familiar, when a trick like smuggling bi-
nary data in filenames works with one format, we
are led to ask whether it will work elsewhere? If
the RAR specification outlines no consequences for
unpleasantness in a filename, does the PKZIP spec-
ification also afford us this luxury? It does!

In contrast to the RAR format, the filename in
PKZIP lies in the Central Directory rather than the
Local File Header. This means that the filename
according to PKZIP actually occurs later in the file,
whereas RAR believes the filename lies just before
the data begins. This trick wasn’t actually needed
based on the file formats that I selected for inclu-
sion in my polyglot, but it may well be useful to you
in future endeavours. In my case, I opted to place
one of the 16-bit real mode routines into the PKZIP
filename, namely the delay routine. When was the
last time one of your binaries executed a filename as
machine code?

GNU Multiboot2 Shenanigans

At what point do we call something a file format?
How much format does there have to be to a file? I
ask because I have trouble identifying this next in-
clusion with an actual file format. Indeed, the GNU
Multiboot2 format has a specification and a parser
(grub-file from the grub2 project).58 But. . . well,
read on and see for yourself if you agree with my

57rar.ksy, near line 151.
58https://www.gnu.org/software/grub/manual/multiboot2/multiboot.html

58

[GNU] Multiboot 2.02
1A0+4 Magic 0xE85250D6
1A4+4 Architecture 0 i386
1A8+4 Header length 0x100
1AC+4 Checksum 0x17ADAE2A

Magic 0xE85250D6
Architecture 0
Header length 0x100
Checksum 0x17ADAE2A

1Ax

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

1Ax

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

2A AE AD 1700 01 00 0000 00 00 00D6 50 52 E8

Figure 13: Multiboot’s side of Janus

feeling of cheekiness in including it in my polyglot.
The GNU Multiboot2 is a pretty straightforward

specification that allows a bootloader like GRUB to
boot a file without having to go via the BIOS. GRUB
will parse a file top-to-bottom looking for the magic
(0xE85250D6), so we can have anything we like both
before and after the relevant bytes. In total, we re-
quire four uint32’s worth of bytes, but we have to
be 64-bit aligned, so I ended up with an additional
four bytes of padding to round off the PKZIP End
of Central Directory.

The format is as follows: Magic, Architecture,
Header Length, Checksum. That’s it. I already
mentioned that the magic is 0xE85250D6. The ar-
chitecture value corresponding to i386 is simply 0x0
and the header length is self-explanatory. The only
thing worth commenting on here is the checksum.
It’s possibly the simplest checksum I’ve ever encoun-
tered: the unsigned 32-bit sum of the magic, archi-
tecture, header length and checksum is 0x0. Simple!

So, all that was required to be able to claim an-
other file format in my polyglot was to find room for
20 bytes, including four bytes of padding! Cheeky?
Absolutely. Technically correct? Absolutely.

If you have GRUB installed on your ma-
chine, you can test the validity of the poly-
glot as a GNU Multiboot2 image with grub-file
–is-x86-multiboot2 janus.com. There should be
no output, but echo $? will inform you that
grub-file returned 0.

Commodore 64 Shenanigans

Up until this point, we’ve been playing around with
well trodden parsers and specifications. It was cer-
tainly a lot of fun getting to this point, but when
I looked back at my in-progress polyglot in a hex
editor, I saw lots of empty space. This displeased
me. A certain idea had been bugging me for a
while as I was working on this project: could I in-
corporate support for an 8-bit computer? Back in
the 80s, when 8-bit machines reigned supreme, hard
drives were prohibitively expensive for most people,

so programs were typically stored on floppies and
cassettes. My initial approach was to explore the
tape format of the ZX Spectrum—falsely expecting
it to be reasonably malleable to the kinds of distor-
tions that are suitable for polyglotting. A week goes
by and I realised that it wasn’t going to work. (For
those interested: Kaitai Struct already has excellent
support for this format.)

The next thing to try on my list was the Com-
modore 64 PRG format, which turned out to only
just be possible! As you’ll see further down, we end
up having part of our ELF header form lines of BA-
SIC, and we make use of 75% of a uint32. This was
my first time playing with machines and architec-
tures from this era, and it was a lot of fun!

(Note to the reader: in keeping with 8-bit
tradition, hexadecimal values in this section are
prepended by ‘$’.)

For any neighbour unacquainted with the won-
ders of the Commodore 64, it is an 8-bit computer
first released in 1982. It’s powered by an 8-bit 6502
CPU and sports 64k of RAM. All pointers are two
bytes long. The primary way to interface with the
machine is the BASIC interpreter, which it boots
to. There are several different file formats that can
be loaded into memory from either floppy, cassette
or even cartridge. (The cartridge was a distinctly
North American luxury that my European ances-
tors were seemingly deprived of.) In my case, I went
for the most common file format: PRG, short for
“program.”

Before we even begin looking at the structure of
these files, we need to know something about how
they are loaded into memory. Indeed, confusingly
enough there are two different ways: absolute and
non-absolute. The difference is whether the Com-
modore 64 will load the PRG file where it wants to
be loaded, or just ignore it and load it to the start of
BASIC RAM at $0800. This was important because
of the lack of dynamic linking at the time; many
programs had hard-coded offsets that required be-
ing loaded to a particular address in order to make
any sense.

59

[Rar] Magic
BF+7 Signature Rar!^Z^G\0 EOF BELL

[Rar] Main Header
C6+2 CRC32 0x90CF CRC32(header) & 0xFFFF
C8+1 BlockType 0x73 HEAD_MAIN
CB+4 BlockSize 0xD

[Rar] File Header
D3+2 CRC 0x924A CRC32(header) & 0xFFFF
D5+1 BlockType 0x74 HEAD_FILE
D6+2 Flags 0x8020 LHD_WINDOW128 LONG_BLOCK
D8+2 BlockSize 0x3E

DA+4 CompSize 0x33
DE+4 UncompSize 0x51
E2+1 HostOS 2 HOST_WIN32
E3+4 CRC32 0x8AC49CB1 (contents)
E7+4 Timestamp 0xC286CA0 1/8/1986 13:37
EB+1 Version 0x14 VERSION_2_0
EC+1 Method 0x30 UNCOMPRESSED
ED+2 FileNameLen 0x1D
EF+4 Attributes 0x20 ARCHIVE

[Zip] LocalFile Header / Rar: Filename
->F3+4 Signature PK\3\4

F7+2 VersionNeeded 0xA
101+4 CRC32 0x2CD1A660 (contents)
105+4 CompSize 0x30
109+4 UncompSize 0x30

String
111+33 String BGPP... \n\r\0$

[Rar] Archive End
144+2 CRC 0x3DC4 CRC32(header) & 0xFFFF
146+1 BlockType 0x7B HEAD_ENDARC
147+2 Flags 0x4000
149+2 BlockSize 7

[Zip] Central Directory
->14B+4 Signature PK\1\2

151+2 VersionNeeded 0xA
15B+4 Crc32 0x2CD1A660
15F+4 CompSize 0x30
163+4 UncompSize 0x30
167+2 FileNameLen 0xF
175+4 LFHOffset 0xF3 -> 0xF3

[Zip] End of Central Dir
188+4 Signature PK\5\6
192+2 EntryCount 1
194+4 Size 0x3D
198+4 OffsetCD 0x14B -> 0x14B

Signature Rar!^Z^G\0

CRC32 0x90CF
BlockType 0x73
BlockSize 0xD

CRC 0x924A
BlockType 0x74
Flags 0x8020
BlockSize 0x3E

CompSize 0x33
UncompSize 0x51
HostOS 2
CRC32 0x8AC49CB1
Timestamp 0xC286CA0
Version 0x14
Method 0x30
FileNameLen 0x1D
Attributes 0x20

Signature PK\3\4
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30

String BGPP... \n\r\0$

CRC 0x3DC4
BlockType 0x7B
Flags 0x4000
BlockSize 7

Signature PK\1\2
VersionNeeded 0xA
Crc32 0x2CD1A660
CompSize 0x30
UncompSize 0x30
FileNameLen 0xF
LFHOffset 0xF3

Signature PK\5\6
EntryCount 1
Size 0x3D
OffsetCD 0x14B

..

..

..

..

..

..

..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0Bx

0Cx

0Dx

0Ex

0Fx

10x

11x

12x

13x

14x

15x

16x

17x

18x

19x

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0Bx

xF

0Cx

x6

0Dx

x3

0Ex

0Fx

x3

10x

11x

x1

12x

13x

14x

x4

xB

15x

16x

17x

18x

x8

19x

1Fx

X X58 58

58 5800 00

X X X X

X

X

X X00 0000 00

X X X X00 0000 00

00

00

00

00

00 00

X X X

X

00 0000 00

00

00 00 00

00 00

X X4B 01 00 003D 00 00 0001 0058 58

58 5800 00P K 05 06

F3 00 00 00X X X X

X

X

X X00 0000 000F 0030 00 00 00

30

00 00 00

60 A6 D1 2CX X X X00 0000 000A 00

00

00

P K 01 02

07 0000 407BC4 3D

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

00

00

00 0030 00 00 0030 00 00 0060 A6 D1 2C

X X X

X

00 0000 000A 00P K 03 04

20

00 00 00

1E 003014A0 6C 28 0CB1 9C C4 8A02

33 00

00 00

33 00 00 003E 0020 80744A 92

00

00 00 00

0D 00 00 0000 0073CF 90

R

a r ! 1A 07 \0

11 01 40 00 B2 32 0F 05 B0 3C 66 FF C7 0F 05

60 B4 86 B0 00 B9 01

00 BA 00 00 CD 15 61 C3

58 58

49 20 4C D2 FF 90 60 B4 00 CD 16 61 EB B2 55 AA EOF

Figure 14: Rar and Zip’s sides of Janus

60

We are very lucky that this is the case! The
first two bytes of a PRG file are a pointer to where
in memory the PRG is supposed to be loaded. In
our case, this is $7f45 (the start of the ELF magic),
which is not a valid location for a BASIC program to
be loaded to. However, by loading our PRG in non-
absolute mode, these bytes are ignored, although
they must still be present.

The next two bytes are supposed to be a pointer
to the first line of BASIC. We are stuck with this
being $4c46. (This is the ‘LF’ of the ELF magic.)
Non-absolute mode to the rescue! Our file is go-
ing to just be parsed sequentially instead of hopping
around for lines of BASIC to interpret.

What comes next is a line of BASIC. I’m sure
many readers will have written some BASIC before,
even those like myself who are too young to have
lived through BASIC’s heyday. But what does a
line of BASIC look like on disk? Disk space was a
premium back in the 80s and it didn’t make sense to
store entire words like PRINT, PEEK and POKE when
a single byte could accomplish the same job. Fortu-
nately for the programmers, commands like LIST au-
tomatically converted the tokenized BASIC on disk
and in memory to the much more familiar and ver-
bose form that we all know.

So, according to a PRG file, a line of BASIC is
composed of: a two-byte little-endian line number,
a single byte BASIC token, arguments in PETSCII
(kinda like ASCII, as we’ll see in a bit), and a NULL
terminator. Here we are at offset +0x4 into our ELF
header, writing BASIC! Out of respect and defer-
ence to the old ways, our first line number is going
to be 10, but what are we going to actually do?

As we don’t have a whole lot of room to do much
of anything in before the ELF header starts getting
picky with us, we have to move our execution some-
where else as soon as possible. The easiest thing
to do is to make our BASIC program simply jump
to some 6502 machine code with the SYS instruc-
tion and then terminate. That sounds easy enough,
apart from having to write 6502 assembly. Let’s fo-
cus on cramming our minimal BASIC program into
what little space we have first, then we can figure
out where to pass execution to later.

On page 62, we have the first 24 bytes of
janus.com, with both the ELF and Commodore 64
interpretations of each byte. Let’s take it from the
top:

As already mentioned, the first $7f45 pointer
would be the load address of the PRG if we loaded

in absolute mode, so these bytes are ignored, as are
the next two bytes $4c46, which completes the ELF
magic.

Now comes $0a00, or “10”, which is our first BA-
SIC line number. The ELF parser believes this to be
EI_CLASS and EI_DATA. Next up we have $9e which
is the BASIC token for the SYS instruction, which
will jump to executing 6502 instructions at the dec-
imal address we provide it. ELF parsers believe this
byte to be EI_VERSION. Asking readelf, we are in-
formed that the version is 158, or 0x9e in hex. So
far so good!

Next up is the argument to the SYS instruction:
“(2491)”. The actual number is variable, and for
a long time I left this as 1234 until I knew exactly
where in memory my 6502 instructions would be.
These bytes occupy the region that the ELF spec
identifies as EI_PAD. (The elf man page is a terrific
quick reference for all these structs. In this case
we’re looking at Elf64_Ehdr.)

Assuming our 6502 instructions do what we want
and culminate with a rts instruction, we will end
up back in BASIC and we should be good? But no,
our BASIC program will continue running, and we
need to gracefully finish it. Unfortunately, the next
few bytes form the e_type and e_machine fields of
the ELF header, which we cannot mess around with.
Any deviation from their current state will result in
the ELF not running under Linux.

So, what does the Commodore 64 think these
bytes mean if we just leave them alone? First, no-
tice that we’re actually off-by-one between the ELF
and Commodore 64 interpretations now: the final
byte of EI_PAD is 0x00, but forms part of the $0002
pointer to the next line of BASIC. Similarly, the
0x02 byte is the start of the 0x0200 e_type field of
the ELF header!

We have $0002 as a pointer to a line of BA-
SIC, but that gets ignored unless we’re in absolute
mode (we aren’t). The bytes that follow, $003e, is
the BASIC line number, in little-endian! 0x3e00 is
15,872 in decimal, and indeed, if we run LIST on the
Commodore 64 after loading this PRG, we see:

10 SYS (2491)
15872

So, in other words, the second byte of e_type
and first byte of e_machine are interpreted as a BA-
SIC line number! Pretty cool! To finish up our BA-
SIC program, we have an instant null byte which
ends line 15872 of BASIC, which is also the second

61

EI_MAGIC
| EI_CLASS
| | EI_DATA
| | | EI_VERSION
| | | | EI_OSABI
| | | | | EI_PAD
| | | | | | e_type
| | | | | | | e_machine
| | | | | | | | e_version
| | | | | | | | | |
7F 45 4C 46 0A 00 9E 20 28 32 34 39 31 29 00 00 02 00 3E 00 00 00 00 00

| | | | | | | | | | |
| | | | | | | | | Empty line , FIN
| | | | | | | | Pointer to next line(ignored)
| | | | | | | Empty line
| | | | | | Line Number (15872)
| | | | | Pointer to next line (ignored)
| | | | " (2491)"
| | | SYS Token
| | Line Number (10)
| Pointer to first line (ignored)
Load address (ignored)

Figure 15: First 24 Bytes of Polyglot, labeled for ELF and Commodore 64 parsing

byte of e_machine (0x3e00). Finally, we have a null
pointer to the next line of BASIC, followed by an-
other null. This indicates the end of the BASIC pro-
gram. But here we have the fun observation I men-
tioned earlier: our BASIC program ends 3 bytes into
the e_version uint32. The last byte only matters
to the ELF parser! And with just one byte to spare!
The next field in the ELF header is e_entry, which
is the entrypoint of the program and something we
definitely can’t screw with. Phew!

Okay great, we can just about smuggle a very
small BASIC program into the ELF header which
will jump to any location we specify and start ex-
ecuting 6502 instructions. To top it off, as long as
we finish our machine code with an rts instruction,
our program will gracefully terminate and return to
the BASIC prompt! So, what are we going to do?
Print our string of course!

If, like me, you have never written or even looked
at 6502 assembly before, you’ll see that it’s not too
hard, but does have a couple of quirks. For one, the
6502 is an 8-bit CPU, but the Commodore 64 has
64k of memory. This means that every pointer takes
two store operations to store in memory: one for the
low byte, and another for the high byte.

Secondly, the first page (256 bytes) of memory is
called the zero page. (The first byte of any pointer
indicates which page it’s in.) The zero page is spe-
cial because we can index structures within it with

just a single byte, i.e. we only need one register
to be an index into our string if we store it in the
zero-page.

62

Despite ASCII being nearly twenty years old
when the C64 was first released, it instead uses
PETSCII, which supports two slightly different lay-
outs. At boot, it has the first character set loaded
with only has capital letters. Our string has lower-
case letters too, but if we try printing it now, we’ll
see it all caps. We can load the alternative charac-
ter set (which does include lowercase) by “printing”
the byte 0x0e. We do this using the C64 CHROUT
routine which lives at $ffd2 in the Commodore’s
KERNAL ROM. All we have to do is put 0x0e in
the A register and jump to the right address ($ffd2):

lda #0x0e
jsr $ffd2

Next we have to store a pointer to our string in
the zero-page. I chose $0020 for this, so we’ll be
storing bytes at $0020 and $0021. Instead of work-
ing out manually where my string would be, I just
loaded the binary in the VICE emulator and used
the built-in monitor (debugger to you and me), to
see where it ended up. It turns out the string lives
at $0910. (BASIC RAM starts at $0800, so this
feels about right.) Storing the pointer simply looks
like:
lda #0x09 ; Load 0x09 in A
sta $21 ; Store byte in A in address $0021
lda #0x10 ; Load 0x10 in A
sta $20 ; Store byte in A in address $0020

A little unusual to modern eyes, but still pretty
straightforward. Lastly, we just need to write some
logic to loop over our string, checking for a null-byte
terminator, and then return control to the BASIC
interpreter with rts.

There are two final quirks to consider. First, the
Commodore 64 has a 40-character wide display, but
my string is longer than that. I opted to include
a manual line break after 33 characters have been
printed just so things wrap in a nice way. Similarly,
I also print another line break when we’re done so
that the BASIC prompt appears neatly on the next
line.

The other quirk deals with PETSCII again. The
string in memory is ASCII because that’s what every
other format that uses it expects. Is converting from
ASCII to PETSCII going to be a royal pain? As for-
tune would have it, in this second PETSCII charac-
ter set, the byte representations of the alphanumeric
characters differ only in the sixth most significant
bit! The alphanumeric characters begin at 0x40 on-
wards, so we only need to make the conversion for

bytes larger than that. Therefore in our character
printing routine that the string printing routine calls
each loop, we can simply do the following (the ASCII
byte to print is in the A register):

cmp #0x40 ; Compare byte in A to 0x40
2 bcc +$2 ; Branch if Carry Clear to the jmp

; instruction (i.e. if A < 0x40)
4 eor #0x20 ; Toggle 6th bit..

jmp $ffd2 ; Jump to CHROUT in KERNAL ROM

We check to see if the byte is greater than 0x40
(‘a’ in PETSCII character set 2), if it is, we bitwise-
or it with 0b00100000 to flip the 6th bit, and then
jump to the CHROUT routine in ROM.

Putting everything together, our 6502 assembly
looks like this:

1 lda #0x0e ; Full Character Set
jsr $ffd2 ; CHROUT

3
lda #0x09

5 sta $21 ; High Byte of String
lda #0x10

7 sta $20 ; Low Byte of String

9 jsr $09cc ; Call PRINTSTR
rts ; Return to BASIC

11
PRINTSTR:

13 ldy #0x0 ; Reset Y register to 0
LOOP:

15 lda ($20),y ; Read char from zero -page
cpy #$21 ; Past 33 characters?

17 beq +$b ; If so, jump to EXTRACR
cmp #$00 ; Null -terminator?

19 beq +$d ; If so, jump to DONE
jsr $09eb ; Jump to PRINTCHAR

21 iny ; Increment Y
jmp $09ce ; Jump to LOOP

23 EXTRACR:
jsr $09e6 ; Jump to PRINTCR

25 jmp $09d4 ; Return to LOOP
DONE:

27 rts ; Return

29 PRINTCR:
lda #13 ; Store CR in A

31 jmp $09eb ; Jump to PRINTCHAR

33 PRINTCHAR:
cmp #0x40 ; Greater than 0x40?

35 bcc +$2 ; If so, jump to DONE
eor #0x20 ; Convert ASCII to PETSCII

37 DONE:
jmp $ffd2 ; CHROUT Routine

As you can see, it’s pretty similar to any other
string printing routine in assembly. (For example,
the one we wrote for the 16-bit real mode portion
of this polyglot.) Sure, there are a couple of extra

63

quirks in there, but nothing too hazardous. Notice
how we were able to use the Y register to index our
string in the zero-page.

The final part to this Commodore 64 addition is
how load this thing? I’ve mentioned that it’s vital
to load this PRG in non-absolute mode so that the
ELF header can coexist with our BASIC program.
This is simple, and can be specified when we use
the LOAD BASIC instruction: LOAD "janus.com",8
is all it takes. Notice the lack of an extra ,1 which
is usually seen with the LOAD command. This extra
argument is used to specify whether we are loading
in absolute mode or not! Alternatively, if using the
VICE emulator like I was, the -basicload argument
does this for us.

 **** commodore 64 basic v2 ****

 64k ram system 38911 basic bytes free

ready.
load"janus.com",8

searching for janus.com
loading
ready.
list

10 sys (2491)
15872
ready.
run
BGPP 2021 GOT ME THINKING STRANGE

- xcellerator

ready.

Thinking of taking your
programming skills beyond BASIC?

Our 8bitworkshop books will teach you how
to speak to computers in their native

languages — 6502 and Z80.

Use our development tools from the comfort
of your home. Write source code in C and
watch as we translate it to machine code,

then run it on a simulated microcomputer.

To access, enter into your data terminal:
8BITWORKSHOP.COM

Summary

Thank you for joining me on this journey, fellow
computer-enjoyers. This whole process was a wild
ride of mixed emotions. These 512 bytes took me a
few months to assemble into their final form. Like
2020’s inaugural Binary Golf Grand Prix, I was con-
vinced that I wouldn’t be able to produce an entry,
but just kept working on it until something started
to come together. Like many readers of this fine
journal, I had read the many prior articles on poly-
glot techniques, but had yet to attempt one of my
own.

If you think that this sounds like fun, then you’re
in luck! The Binary Golf Grand Prix has run now
for four years and rumours have it that there are
already plans for 2024.
000: 7f E L F 0a 00 9e 20 (2 4 9 1) 00 00
010: 02 00 3e 00 00 00 00 00 aa 00 40 00 00 00 00 00
020: 4a 00 00 00 00 00 00 00 b4 0e b7 00 b3 00 cd 10
030: 90 90 90 c3 40 00 38 00 01 00 60 b4 02 b7 00 b6
040: 02 b2 00 cd 10 61 c3 e8 66 01 01 00 00 00 05 00
050: 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00
060: 00 00 58 58 58 58 58 58 58 58 2b 00 00 00 00 00
070: 00 00 2b 00 00 00 00 00 00 00 60 b4 06 30 c0 b7
080: 03 31 c9 ba 4f 18 cd 10 61 c3 0e 1f ba 11 02 b4
090: 09 cd 21 b8 02 4c cd 21 60 ac 84 c0 74 08 e8 87
0a0: ff e8 d5 00 eb f3 61 e9 4b 01 b0 01 66 89 c7 be
0b0: 11 01 40 00 b2 32 0f 05 b0 3c 66 ff c7 0f 05 52
0c0: 61 72 21 1a 07 00 cf 90 73 00 00 0d 00 00 00 00
0d0: 00 00 00 4a 92 74 20 80 3e 00 33 00 00 00 33 00
0e0: 00 00 02 b1 9c c4 8a a0 6c 28 0c 14 30 1e 00 20
0f0: 00 00 00 P K 03 04 0a 00 00 00 00 00 58 58 58
100: 58 60 a6 d1 2c 30 00 00 00 30 00 00 00 00 00 00
110: 00 B G G P 2 0 2 1 G O T M
120: E T H I N K I N G S T R A N
130: G E - x c e l l e r a t o r
140: 0a 0d 00 24 c4 3d 7b 00 40 07 00 P K 01 02 00
150: 00 0a 00 00 00 00 00 58 58 58 58 60 a6 d1 2c 30
160: 00 00 00 30 00 00 00 0f 00 00 00 00 00 58 58 58
170: 58 58 58 58 58 f3 00 00 00 60 b4 86 b0 00 b9 01
180: 00 ba 00 00 cd 15 61 c3 P K 05 06 00 00 58 58
190: 58 58 01 00 3d 00 00 00 4b 01 00 00 58 58 58 58
1a0: d6 50 52 e8 00 00 00 00 00 01 00 00 2a ae ad 17
1b0: e8 c7 fe e8 84 fe be 11 7d e8 ce fe a9 0e 20 d2
1c0: ff a9 09 85 21 a9 10 85 20 20 cc 09 60 a0 00 b1
1d0: 20 c0 21 f0 0b c9 00 f0 0d 20 eb 09 c8 4c ce 09
1e0: 20 e6 09 4c d4 09 60 a9 0d 4c eb 09 c9 40 90 02
1f0: 49 20 4c d2 ff 90 60 b4 00 cd 16 61 eb b2 55 aa

Thanks go to @netspooky for creating and mas-
terminding this competition. Thanks also to ev-
eryone who submitted entries last year, as well as
the Binary Golf Association for comprehending and
scoring them all.

So this is my submission in all its glory: an x86
bootloader, ELF, COM, RAR, ZIP, GNU Multi-
boot2 Image, and Commodore 64 PRG hybrid. You
can find this project with a full nasm listing on
GitHub.59

Until next time!

59git clone https://github.com/xcellerator/janus

64

Basic (loaded at $0801)
C64 basic

Line
4+2 Line 10

6+1 Token 0x9E SYS
7+8 Argument ' (2491)' $9bb-> 0x1BC
F+1 Token 0 End of line

Line
10+2 NextLine +2 -> 0x16
12+2 Line 15872

14+2 Token 0 End of Line
Line

->16+2 NextLine 0 End of program

6502 ASM
String ($0910)

->111+33 String BGPP...or\n\r\0$

Start ($09bb)
->1BC+2 lda #0x0e Fu� Character Set

1BE+3 jsr 0xffd2 C64 CHROUT
1C1+2 lda #>msg ($09)-> 0x0x111 -> ($0910)
1C3+2 sta $21 High Byte
1C5+2 lda #<msg ($10)-> 0x0x111 -> ($0910)
1C7+2 sta $20 Low Byte
1C9+3 jsr $09cc ca� printStr
1CC+1 rts Return to BASIC

Print String routine ($09CC)
1CD+2 ldy #0x0 Reset Y

Loop ($09CE)
->1CF+2 lda ($20) y Read in a character

1D1+2 cpy #$21 After 33 chars
1D3+2 beq +$b Jump to ExtraCr-> 0x1E0
1D5+2 cmp #$00 $00-terminated string
1D7+2 beq +$d Jump to Done-> 0x1E6
1D9+3 jsr $09eb Jump to printChar-> 0x1EC
1DC+1 iny Increment Y
1DD+3 jmp $09ce Jump to LOOP

ExtraCr
->1E0+3 jsr $09e6 Print a CR-> 0x1E7

1E3+3 jmp $09d4 Jump back into Loop-> 0x1CF
Done

->1E6+1 rts Return
PrintCR routine ($09e6)

->1E7+2 lda #13 Carriage Return
1E9+3 jmp $09eb Jump to printChar-> 0x1EC

PrintChar routine ($09eb)
->1EC+2 cmp #64

1EE+2 bcc +$2 Done
1F0+2 eor #0b00100000 Convert Char

Done
1F2+3 jmp $ffd2 C64 CHROUT

Line 10

Token 0x9E
Argument ' (2491)'

Token 0

NextLine +2
Line 15872

Token 0

NextLine 0

String BGPP...or\n\r\0$

lda #0x0e
jsr 0xffd2

lda #>msg
sta $21
lda #<msg
sta $20

jsr $09cc
rts

ldy #0x0

lda ($20) y
cpy #$21
beq +$b
cmp #$00
beq +$d
jsr $09eb
iny
jmp $09ce

jsr $09e6
jmp $09d4

rts

lda #13
jmp $09eb

cmp #64
bcc +$2
eor #0b00100000

jmp $ffd2

.. ..

..

..

..

..

..

..

..

..

.. ..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

11x

12x

13x

14x

1Bx

1Cx

1Dx

1Ex

1Fx

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x2

01x

x6

11x

x1

12x

13x

14x

1Bx

xC

1Cx

xD

xF

1Dx

1Ex

x6

x7

xC

1Fx

x2

4C 46

7F 45

4C D2 FF

49 20

90 02C9 40

4C EB 09A9 0D

60

4C D4 0920 E6 09

4C CE 09C820 EB 09F0 0DC9 00F0 0BC0 21

B1

20

A0 00

6020 CC 0985 20A9 1085 21A9 09

20 D2

FF

A9 0E

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $

00 00

00 003E 0002 00

00(2 4 9 1) \09E0A 004C 46

7F 45

00

E8 C7 FE E8 84 FE BE 11 7D E8 CE FE

90 60 B4 00 CD 16 61 EB B2 55 AA EOF

Figure 16: PRG’s side of Janus

65

Corrections
Those more familiar with Commodore BASIC than
I might know that the brackets around the argu-
ment to the SYS instruction are not required. The
KERNAL will simply ignore them when parsing the
line. Perhaps without the minimum size limitation
brought about by the bootloader, there might be a
way to save more space in a PRG/ELF hybrid.

As Janus began to take form, I needed to know
how many bytes were left that didn’t impact my
tests. I kept setting all the null bytes (excluding
padding for things like integers) to 58 while making
sure the functionality was unaffected. This makes
them stand out nicely in a hexdump so that I could
find the large unused chunks. However, as pointed
out by my editors, there was an unintended conse-
quence! All the way down at offset 0x19c are four
bytes of 58 and are labeled as padding to properly
align the GNU Multiboot 2 image to 64 bits. The
first two of these bytes are also the length of the com-
ment of the PKZip file. It pains me that I missed
the opportunity for some added neatness by setting
these two bytes back to 00, but the SHA256 hashes
have me stuck in a bind.

66

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

[COM/MBR] Start
0+2 jg next -> 0x47jg next

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x 7F 45

[MBR] printChar
->28+2 mov ah, 0xE Display Character (TTY Output)
2A+2 mov bh, 0 Write to Page 0
2C+2 mov bl, 0 Foreground Colour
2E+2 int 0x10 Graphics Interrupt
33+1 ret

mov ah, 0xE
mov bh, 0
mov bl, 0
int 0x10
ret

..
03x

x8

03x 90 90 90 C390 90 90

CD 10B3 00B7 00B4 0E

[COM/MBR] setCursor
->3A+1 pusha
3B+2 mov ah, 2 Set cursor position
3D+2 mov bh, 0 Page number
3F+2 mov dh, 2 Row number
41+2 mov dl, 0 Column number
43+2 int 0x10 Graphics Interrupt (no return value)
45+1 popa
46+1 ret

pusha
mov ah, 2
mov bh, 0
mov dh, 2
mov dl, 0
int 0x10

popa
ret

..
04x

xA

04x C361CD 10B2 00

B6

02

B7 00B4 0260

[ELF] Header
e_ident

0+4 EI_MAG \x7F ELF
5+1 EI_DATA None

EI_MAG \x7F ELF
EI_DATA

00x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x 32 34 39 31 29 00 0028209E0A 32 34 39 31 29 00 0028209E000A7F E L F

ELF64_Ehdr
10+2 e_type 2 ET_EXEC
12+2 e_machine 0x3E EM_X86_64

18+8 e_entry 0x4000AA -> 0xAA
20+8 e_phoff 0x4A -> 0x4A

34+2 e_ehsize 0x40
36+2 e_phentsize 0x38
38+2 e_phnum 1

e_type 2
e_machine 0x3E

e_entry 0x4000AA

e_phoff 0x4A

e_ehsize 0x40
e_phentsize 0x38
e_phnum 1

01x

02x

03x

01x

02x

03x 90 90 90 C3

B4 0E B7 00 B3 00 CD 10

00 00 00 00

01 0038 0040 0090 90 90 C3

B4 0E B7 00 B3 00 CD 10

4A 00 00 00 00 00 00 00
AA 00 40 00 00 00 00 00

00 00 00 003E 0002 00

[COM/MBR] next
->47+3 call bootloader -> 0x1B0call bootloader..x7 E8 66 01[ELF] ELF64_Phdr

->4A+4 p_type 1
4E+4 p_flags 5
52+8 p_offset 0
5A+8 p_vaddr 0x400000
6A+8 p_filesz 0x2B She�code + Strlen
72+8 p_memsz 0x2B She�code + Strlen

p_type 1
p_flags 5
p_offset 0
p_vaddr 0x400000
p_filesz 0x2B
p_memsz 0x2B

..
05x

06x

07x

xA

05x

06x

07x

X X X X X X X X

2B 00 00 00 00 00 00 00

2B 00 00 00 00 00

00 00

X X X X X X X X

00 00 40 00 00 00

00 00

00 00 00 00 00 00 00 00

05 00

00 00

01 00 00 00

[MBR] clearScreen
->7A+1 pusha
7B+2 mov ah, 6 "Scro� up window"
7D+2 xor al, al Number of Lines to Scro� (0x00 = Fu�)
7F+2 mov bh, 3 Colour attribute
81+2 xor ax, ax (CH,CL) = coords of Upper Left Corner
83+3 mov dx, 0x184f (DH,DL) = lower right corner
86+2 int 0x10 Graphics Interrupt (no return value)
88+1 popa
89+1 ret

pusha
mov ah, 6
xor al, al
mov bh, 3
xor ax, ax
mov dx, 0x184f
int 0x10

popa
ret

..
08x

xA

08x C361CD 10BA 4F 1831 C9

B7

03

30 C0B4 0660

[COM] printString
set CS=DS

->8A+1 push cs
8B+1 pop ds

Write string
8C+3 mov dx, 0x0211
8F+2 mov ah, 9 Write string to stdout
91+2 int 0x21 DOS interrupt

Exit(2)
93+3 mov ax, 0x4c02 4C=Exit 02= Ret Val
96+2 int 0x21 DOS interrupt

push cs
pop ds

mov dx, 0x0211
mov ah, 9
int 0x21

mov ax, 0x4c02
int 0x21

..

..

..

09x

xA

xC

09x

x3 CD 21B8 02 4C

CD 21

B4

09

BA 11 02

1F0E

[MBR] printString
98+1 pusha

loop
->99+1 lodsb Load char in (SI) to AL
9A+2 test al, al Check for nu�-byte
9C+2 jz .end -> 0xA6
9E+3 call printChar Print the char-> 0x28
A1+3 call delay Cheap animation e�ect-> 0x179
A4+2 jmp .loop -> 0x99

end
->A6+1 popa
A7+3 jmp waitForKeypress -> 0x1F5

pusha

lodsb
test al, al
jz .end
call printChar
call delay
jmp .loop

popa
jmp waitForKeypress

..

..

..

0Ax

x8

x9

0Ax

x6 E9 4B 0161

EB F3E8 D5 00

E8 87

FF

74 0884 C0AC

60

[ELF] 64b she�code
->AA+2 mov al, 1 WRITE
AC+3 mov di, ax STDOUT
AF+5 mov esi, 0x400111 bu�er-> 0x111
B4+2 mov dl, 0x32 strlen
B6+2 syscall

B8+2 mov al, 0x3C EXIT
BA+3 inc di ret 2
BD+2 syscall

mov al, 1
mov di, ax
mov esi, 0x400111
mov dl, 0x32
syscall

mov al, 0x3C
inc di
syscall

..
0Bx

xA

0Bx 0F 0566 FF C7B0 3C0F 05B2 32

BE

11 01 40 00

66 89 C7B0 01

[Rar] Magic
BF+7 Signature Rar!^Z^G\0 EOF BELLSignature Rar!^Z^G\0..

0Cx

xF

0Cx

R

a r ! 1A 07 \0 [Rar] Main Header
C6+2 CRC32 0x90CF CRC32(header) & 0xFFFF
C8+1 BlockType 0x73 HEAD_MAIN
CB+4 BlockSize 0xD

CRC32 0x90CF
BlockType 0x73
BlockSize 0xD

..
0Dx

x6

0Dx

00

00 00 00

00 00 00

00 00 00

0D 00 00 0000 0073CF 90

[Rar] File Header
D3+2 CRC 0x924A CRC32(header) & 0xFFFF
D5+1 BlockType 0x74 HEAD_FILE
D6+2 Flags 0x8020 LHD_WINDOW128 LONG_BLOCK
D8+2 BlockSize 0x3E

DA+4 CompSize 0x33
DE+4 UncompSize 0x51
E2+1 HostOS 2 HOST_WIN32
E3+4 CRC32 0x8AC49CB1 (contents)
E7+4 Timestamp 0xC286CA0 1/8/1986 13:37
EB+1 Version 0x14 VERSION_2_0
EC+1 Method 0x30 UNCOMPRESSED
ED+2 FileNameLen 0x1D
EF+4 Attributes 0x20 ARCHIVE

CRC 0x924A
BlockType 0x74
Flags 0x8020
BlockSize 0x3E

CompSize 0x33
UncompSize 0x51
HostOS 2
CRC32 0x8AC49CB1
Timestamp 0xC286CA0
Version 0x14
Method 0x30
FileNameLen 0x1D
Attributes 0x20

..
0Ex

0Fx

x3

0Ex

0Fx

20

00 00 00

1E 003014A0 6C 28 0CB1 9C C4 8A02

33 00

00 00

33 00 00 003E 0020 80744A 92

[Zip] LocalFileHeader / [Rar] Filename
->F3+4 Signature PK\3\4
F7+2 VersionNeeded 0xA
101+4 CRC32 0x2CD1A660 (contents)
105+4 CompSize 0x30
109+4 UncompSize 0x30

Signature PK\3\4
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30

..
10x

11x

x3

10x

11x

00

00

00 00

X X X

X

00 0000 00

00

00

00 0030 00 00 0030 00 00 0060 A6 D1 2C

X X X

X

00 0000 000A 00P K 03 04

[A�] String ($0910)
->111+33 String BGPP...or\n\r\0$String BGPP...or\n\r\0$..

12x

13x

14x

x1

12x

13x

14x

B G G P 2 0 2 1 G O T M

E T H I N K I N G S T R A N

G E - x c e l l e r a t o r

\n \r \0 $ [Rar] Archive End
144+2 CRC 0x3DC4 CRC(header) & 0xFFFF
146+1 Block Type 0x7B HEAD_ENDARC
147+2 Flags 0x4000
149+2 Block Size 7

CRC 0x3DC4
Block Type 0x7B
Flags 0x4000
Block Size 7

..x4 07 0000 407BC4 3D [Zip] Central Directory
->14B+4 Signature PK\1\2
151+2 VersionNeeded 0xA
15B+4 CRC32 0x2CD1A660
15F+4 CompSize 0x30
163+4 UncompSize 0x30
167+2 FileNameLen 0xF
175+4 LFHOffset 0xF3 -> 0xF3

Signature PK\1\2
VersionNeeded 0xA
CRC32 0x2CD1A660
CompSize 0x30
UncompSize 0x30
FileNameLen 0xF
LFHOffset 0xF3

..
15x

16x

17x

xB

15x

16x

17x X X X X

X

X

X X00 0000 00

X X X X00 0000 00

00

00

F3 00 00 00X X X X

X

X

X X00 0000 000F 0030 00 00 00

30

00 00 00

60 A6 D1 2CX X X X00 0000 000A 00

00

00

P K 01 02

[MBR] delay
->179+1 pusha
17A+2 mov ah, 0x86 BIOS Wait
17C+2 mov al, 0 Unused
17E+3 mov cx, 1 Seconds
181+3 mov dx, 0 Mi�iseconds
184+2 int 0x15 Memory Interrupt
186+1 popa
187+1 ret

pusha
mov ah, 0x86
mov al, 0
mov cx, 1
mov dx, 0
int 0x15

popa
ret

..
18x

x9

18x C361CD 15BA 00 00

B9 01

00

B0 00B4 8660

(Status Returned in AH)

[ZIP] End of Central Directory
188+4 Signature PK\5\6
192+2 EntryCount 1
194+4 Size 0x3D
198+4 OffsetCD 0x14B -> 0x14B

Signature PK\5\6
EntryCount 1
Size 0x3D
OffsetCD 0x14B

..
19x

x8

19x X X58 58

X X\0 \0

X X4B 01 00 003D 00 00 0001 0058 58

X X\0 \0P K 05 06

[GNU] Multiboot 2.02
1A0+4 Magic 0xE85250D6
1A4+4 Architecture 0 i386
1A8+4 Header length 0x100
1AC+4 Checksum 0x17ADAE2A

Magic 0xE85250D6
Architecture 0
Header length 0x100
Checksum 0x17ADAE2A

..
1Ax

xE

1Ax

X X

2A AE AD 1700 01 00 0000 00 00 00D6 50 52 E8

X X

[COM/MBR] Bootloader
->1B0+3 call clearScreen -> 0x7A
1B3+3 call setCursor -> 0x3A
1B6+3 mov si, msg -> 0x111
1B9+3 call printString -> 0x8A

call clearScreen
call setCursor
mov si, msg
call printString

1Bx1Bx E8 CE FEBE 11 7DE8 84 FEE8 C7 FE

[PRG] 6502 ($09bb)
->1BC+2 lda #0x0e Fu� Character Set
1BE+3 jsr 0xffd2 C64 CHROUT
1C1+2 lda #>msg ($09)-> 0x111 -> ($0910)
1C3+2 sta $21 High Byte
1C5+2 lda #<msg ($10)-> 0x111 -> ($0910)
1C7+2 sta $20 Low Byte
1C9+3 jsr $09cc Ca� printStr
1CC+1 rts Return to BASIC

PrintCR routine ($09e6)
->1E7+2 lda #13 Carriage Return
1E9+3 jmp $09eb Jump to printChar-> 0x1EC

PrintChar routine ($09eb)
->1EC+2 cmp #64
1EE+2 bcc +$2 Done
1F0+2 eor #0b00100000 Convert Char

Done
->1F2+3 jmp $ffd2 C64 CHROUT

lda #0x0e
jsr 0xffd2

lda #>msg
sta $21
lda #<msg
sta $20
jsr $09cc

rts

lda #13
jmp $09eb

cmp #64
bcc +$2
eor #0b00100000

jmp $ffd2

..

..

..

.. ..

1Cx

1Fx

xC

1Cx

x7

xC

1Fx

x2 4C D2 FF

49 20

90 02C9 40

4C EB 09A9 0D

6020 CC 0985 20A9 1085 21A9 09

20 D2

FF

A9 0E

Print String routine ($09CC)
->1CD+2 ldy #0x0 Reset Y

Loop ($09CE)
->1CF+2 lda ($20),` y Read in a character
1D1+2 cpy #$21 After 33 chars
1D3+2 beq +$b Jump to ExtraCr-> 0x1E0
1D5+2 cmp #$00 $00-terminated string
1D7+2 beq +$d Jump to Done-> 0x1E6
1D9+3 jsr $09eb Jump to printChar-> 0x1EC
1DC+1 iny Increment Y
1DD+3 jmp $09ce Jump to LOOP

ExtraCr
->1E0+3 jsr $09e6 Print a CR-> 0x1E7
1E3+3 jmp $09d4 Jump back into Loop-> 0x1CF

Done
->1E6+1 rts Return

ldy #0x0

lda ($20), y
cpy #$21
beq +$b
cmp #$00
beq +$d
jsr $09eb
iny
jmp $09ce

jsr $09e6
jmp $09d4

rts

..

..

..

1Dx

1Ex

xD

xF

1Dx

1Ex

x6 60

4C D4 0920 E6 09

4C CE 09C820 EB 09F0 0DC9 00F0 0BC0 21

B1

20

A0 00

-> 0x1CD ($09CC)

[COM/MBR] waitForKeypress
->1F5+1 nop Single Byte Padding (NOP)
1F6+1 pusha
1F7+2 mov ah, 0x0 Get Keystroke
1F9+2 int 0x16 Keyboard Interrupt
1FB+1 popa
1FC+2 jmp bootloader -> 0x1B0

nop
pusha

mov ah, 0x0
int 0x16

popa
jmp bootloader

..x5 EB B261CD 16B4 006090

MBR signature
1FE+2 Signature 0x55AASignature 0x55AA..xE 55 AA EOF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

C64 PRG (loaded at $0801)
C64 basic

Line
4+2 Line 10

6+1 Token 0x9E SYS
7+8 Argument ' (2491)' $9bb-> 0x1BC
F+1 Token 0 End of line

Line
10+2 NextLine +2 -> 0x16
12+2 Line 15872

14+2 Token 0 End of Line
Line

->16+2 NextLine 0 End of program

Line 10

Token 0x9E
Argument ' (2491)'

Token 0

NextLine +2
Line 15872

Token 0

NextLine 0

.. ..

..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

01x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

00x

x2

01x

x6

4C 46
7F 45

00 00

00 003E 0002 00

00(2 4 9 1) \09E0A 004C 46
7F 45

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

04A

07A

08A

098

0AA

0BF

0F3

14B

179

188

1B0

1BC

1F5
1FE

03A

028

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xFx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

018

(no return value)

1CD

1E7

000

LOAD"JANUS.COM",8

SEARCHING FOR JANUS.COM
LOADING
READY.
LIST

10 SYS (2491)
15872
READY.

Figure 17: All sides of Janus

67

