
22:10 A Tourist’s Guide to Эльбрус
by evm

In the tradition of the many high quality tourist
guides that have appeared in this fine publication,
let’s take a magical tour around Russia’s modern
computer architecture, the Elbrus 2000.45 46 47

At A Glance

Common Models
Elbrus-1S+, Elbrus-4S, Elbrus-8S, Elbrus-
8SV, Elbrus-16S

Architecture
Von Neumann
Very Long Instruction Word
Register Windowing (32-bit Base Registers)

Registers
g0–g31: Global Registers
r0–r17: General Purpose (Windowed)
b0–b7: Overlay Register within Window
Pred0-Pred31: Boolean Predicate Registers

Address Space
64-bit Virtual Addressing
Unknown Physical Memory Map

Background & History

Elbrus is a Russian CPU architecture that has been
around in some form for over 40 years. It started at
Lebedev Institute of Precision Mechanics and Com-
puter Engineering. It was the first superscalar, out-
of-order execution processor developed in the Soviet
Union (when the Elbrus 1 debuted in 1979). The ar-
chitecture was extended to be a very long instruction
word (VLIW) architecture with Elbrus 3 in 1990.
Once fully integrated as a microprocessor architec-
ture in 2001 (previous versions had used many dis-
crete chips), the architecture became known as El-
brus 2000, or E2K for short. Elbrus is designed in
Russia but currently manufactured by TSMC in Tai-
wan because of a lack of Russian production facilities
capable of producing chips at advanced technology
nodes.48

In the early ’90s, the Lebedev Institute spun
off a joint stock company called the Moscow Cen-
ter of SPARC Technologies (now shortened to just
MCST). MCST currently produces new Elbrus chips
and Elbrus-based PCs, laptops, and servers. Elbrus-
8S and 8SV are the current top-of-the-line proces-
sor models (eight core versions for servers and desk-
tops), and a lower-cost 1S+ (single core) is available
as well. Note the transliteration from Cyrillic where
the model names appear as Эльбрус-8С, Эльбрус-
8СB, and Эльбрус-1C+, respectively. Anecdotally,
the 8S CPUs are about three times slower than a
comparable Intel CPU,49 but the draw of Elbrus
is that it’s a fully domestically designed Russian
processor. The Russian military has reportedly or-
dered thousands of ruggedized laptops based on the
Elbrus-1S+,50 although there is no indication that
the order was ever delivered.

There is currently very little public documenta-
tion on Elbrus because MCST controls most doc-
umentation under nondisclosure agreements. This
means we don’t have full processor documentation
like we normally would for a commercial CPU.

45Travis Goodspeed and Ryan Speers, “A Tourist’s Phrasebook for Reversing Embedded ARM in the Dialect of the Cortex
M Series,” PoC∥GTFO 11:6

46Ryan Speers and Travis Goodspeed, “A Tourist’s Phrasebook for Reversing MSP430,” PoC∥GTFO 11:08
47Chris Hewitt, “A Tourist’s Guide to Altera NIOS,” PoC∥GTFO 21:7
48Ian Cutress, “Russia’s Elbrus 8CB Microarchitecture: 8-core VLIW on TSMC 28nm,” AnandTech, June 1, 2020.
49Anton Shilov, “Russian-Made Elbrus CPUs Fail Trials, ‘A Completely Unacceptable Platform’,” Tom’s Hardware, December

24, 2021.
50Inna Sidorkova, “Цены на военные ноутбуки достигли Эльбруса.” July 9, 2018, RBC.

46

We used three sources of information for this ar-
ticle: (1) a Russian guide to Elbrus programming
and optimization published by MCST,51 (2) source
code published by the OpenE2K group (a hobby-
ist group seemingly unrelated to MCST), and (3)
leaked Linux kernel source code.

MCST is currently on the US sanctions list but
thanks to the Reverend and friends we had access to
an Elbrus-1S+ machine and used it to play around
with some code examples. Our Elbrus was running
a version of Linux made by MCST, but other Rus-
sian Linux distros are also available for Elbrus (e.g.,
Astra Linux). The Elbrus machine has a compiler
called lcc, which is the MCST compiler based on gcc.
It produces standard Linux ELF binary files. The
options for disassembly at the moment are limited
to ldis, which is part of lcc, and objdump, which is
part of the binutils package put out by the OpenE2K
group. ldis produces cleaner output, including reso-
lution of symbol names, while objdump has a debug
flag in the build that will prefix the output with the
decoded instructions in hex. Anecdotally, ldis seems
to miss some things (e.g., not disassemble all func-
tions), although that could be due to operator error.

In order to explore the Elbrus instruction set we
updated rix’s Smashing C++ VPTRs from Phrack
56:8. That is a whole story for a another day, but
you will find my code examples and the correspond-
ing Elbrus disassembly attached to this PDF.52

Basics of Instruction Set Decoding

The first thing we needed to figure out was how
the instruction format works since the official docu-
mentation left this topic out entirely. Fortunately
we found that the OpenE2K binutils release has
a preprocessor flag ENABLE_E2K_ENCODINGS, which
causes objdump to print out the instruction bytes
and their groupings.53 A version of objdump with
this flag was what we used to produce the disassem-
bly for most of this article.

In Elbrus documentation, the VLIW is called
a “wide command” (широкой командой). A wide
command contains multiple instructions, each of
which is targeted at individual execution units in
the CPU pipeline. The documentation variously
uses the terms “commands” (команд), “instructions”
(инструкций), and “operations” (операций) for the

component instructions within the instruction word.
The OpenE2K objdump code refers to the way

these component instructions are encoded as “sylla-
bles.” A nice feature of Elbrus is that the instruction
encoding is fairly simple when compared against
modern DSP architectures we’ve experienced. In-
struction counting is an exploitation task that can
be pretty complicated on some architectures, but
not Elbrus. It’s fairly simple to determine the
length of an instruction from the initial “HS” syl-
lable (shown on page 49).

The HS syllable determines the presence of the
other instruction syllables, which appear in a partic-
ular order. The order is: SS; ALU; CS0; ALES half
syllables 2 and 5; CS1; ALES half syllables 0, 1, 3,
and 4; AAS half syllables; a gap check; CDS; PLS;
and finally LTS (literals). Literal syllables (i.e., im-
mediate values) occur at the end of the syllables.
The OpenE2K objdump code looks for all of the
syllable presence flags above, reads them in order
(minding the possible gap), and then compares the
number of syllables read against the size field in HS.
Any extra syllables are read as literals. For syllables
that contain “half syllables” (i.e., 16-bit values), the
order of the syllables is flipped as they appear se-
quentially in memory.

Byte order | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Half syllable order | 1 | 0 | 3 | 2 |

This makes more sense if you think about the
bytes being read in as 4-byte little-endian values.

Word order | 0 | 1 |

Byte order | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 |

Half syllable order | 0 | 1 | 2 | 3 |

Register Set

Elbrus’s basic registers consist of 18 general-purpose
registers (r0–r17), 32 global registers (g0–g31), and
a sliding set of windowed registers (b0–b7). More
will be explained about the register windowing in
the next section. Registers are prefixed with an ac-
cess width, similar to x86.

For example, sr0 is single (32-bit) r0, and dr0 is
double (64-bit) r0, which is also the default. When
the registers are used with floating point values,

51unzip pocorgtfo22.pdf elbrusprog.pdf
Murad Neumann-zadeh and Sergei Korolev, “Руководство по эффективному программированию на платформе «Эльбрус»”

52unzip pocorgtfo22.pdf vptrs.zip
53git clone https://git.mentality.rip/OpenE2K/binutils-gdb.git

48

|31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

| ALU | ALES | PLS | CDS | CS | | C| | L| NOP | S | F |
L = loop mode
NOP = number of cycles to delay (max 7)
S = size of instruction word (add 1 to get number of 8-byte fields in the instruction word)
C = presence of SS (control transfer) syllable
ALU = presence of ALU syllables (6 possible)
CS = presence of control syllables (call/return , windowing instructions) (CS0 = 14, CS1 = 15)
F = size of F1 fragment (add 1 to get number of 4-byte fields in the fragment)
ALES = presence of ALES syllables (5 possible)
CDS = presence of CDS syllables
PLS = presence of CLS syllables

Encoding of the initial HS syllable, which determines the presence of other syllables, in an Elbrus-wide
instruction word. It is unclear what the ALES, CDS, and PLS syllables are used for as we did not generate
any of those instructions in the example code.

there is an xr0, which is an 80-bit version, presum-
ably using the long double format from x86. Accord-
ing to the documentation, two double registers can
be accessed as a quad register – for example qr[i]
where [i] is even – but gdb on our box doesn’t seem
to be aware of this notation.

CAUTION: Elbrus has a word size of 32-bits for
both registers and memory accesses, so the notion
of single/double/quad on Elbrus is double what you
might be used to on 64-bit x86, where the length of
a word dates back to its early ancestors.

Basic Arithmetic, and Memory Oper-
ations in Elbrus

Here we show the various ALU register operations:

Integer Arithmetic Instructions
add Addition
sub Subtraction
rsub Reverse subtraction

umul/smul (Un)signed integer multiplaction
udiv/sdiv (Un)signed integer division

umod/smod (Un)signed modulo
sxt Sign Extend

Bitwise Operations
and/andn Boolean and/nand
or/orn Boolean or/nor
xor/xorn Boolean xor/xnor
shl/shr Shift left/right
scl/scr Shift cyclic
sar Shift right arithmetic (signed)
insf/getf Set/get bitfield

Floating Point Arithmetic Instructions
fadd Floating point addition
fsub Floating point subtraction
frsub Floating point rev. subtraction
fmax/fmin Floating point maximum/minimum
fmul/fscale FP mult. / mult. by power of 2
fdiv/frcp Floating point division/reciprocal
fsqrt Floating point square root

A basic ALU instruction looks like this:

ALS0 1181d48d addd,0 %dr1, _f16s,_lts0hi 0xfff0, %dr13

This translates to “add double precision, using
channel 0, the 64-bit register %dr1 to the signed 16-
bit value 0xfff0, and place the result in dr13.” There
are six ALU channels, so you can do up to six ALU
instructions in one wide instruction. There is no
simple register “move,” so the compiler tends to use
a zero-add as a “move” instruction. The full list of

49

ALU register operations is shown in the table above.
Notice that this is a fairly small number of opera-
tions. Outside of the VLIW construct, the Elbrus
instruction set feels pretty RISC-like.

Memory operations are also pretty simple. Op-
erations are load and store with a variety of width
specifiers. Addresses can be a register plus an im-
mediate offset, or the sum of two registers. Here is
an example of a basic load operation:

ALS0 678dc08c ldd,0 %dr13, 0x0, %dr12

ldis renders this (a bit more clearly) as:

ldd,0 [%dr13 + 0x0], %dr12

This translates as “load double word (64-bits) from
memory, using channel 0, from the address dr13 +
0, and store in register dr12.” There are also ar-
ray memory load/store operations (ldaa/staa) that
work similarly. As far as we can tell from the docu-
mentation, the array mode doesn’t add any special
addressing. It’s still the sum of two registers or a
register plus a constant; the main advantage is that
there’s a built-in post-increment operation.

Register Windowing
Probably the simplest way to understand register
windowing is that it functions similarly to local vari-
ables within a stack frame in a memory stack. In
processors without windowing (which is nearly all
processor families with some notable exceptions, like
SPARC and Itanium), we are used to code transfer-
ring registers around between function calls, mean-
ing that some registers need to be saved on the mem-
ory stack or transferred to nonclobbered registers
(those guaranteed by the application-binary inter-
face to not get modified by the called function) prior
to a function call.

A function of reasonable complexity will save
registers it’s not supposed to clobber to the memory
stack so that they are available for calculations and
then restore the previous values from the stack at
the end of the function. Register windowing aims to
reduce some of this register bucket-brigading over-
head by making the register set function more like
a memory stack. In the same way that a function
allocates a stack frame for itself, a function allocates
a window of registers.

On Elbrus, this is accomplished in a function
prologue with the setwd instruction. After setwd
executes, the “register” r0 is really a reference to the

first item in the register window. Now the function
can use r0 to r<N> without having to save any reg-
isters from the calling function. How about parame-
ter passing in registers? Just like architectures with
stack-passed parameters, we need a calling function
and the called function to share an overlapping area.

This is done with a wbs parameter in the call in-
struction. wbs indicates the start of shared function
parameters within the current window. After a call,
r0 in the called function now refers to the base of
the shared parameter area. This is illustrated here,
where a caller function has a window of size N and
calls a function that allocates a window of size K:

Caller
dr0 dr(N-1)
<- wbs -> Parameter area

dr0 dr(K-1)
Callee

Elbrus also offers a sliding or mobile base reg-
ister (b), which a function can use within its own
function window. The base register is just an over-
lay on the existing register window; it points to a
given register within the window. Accesses to regis-
ters with the base register use an array notation—for
example, db[0] means “access first double register
(64-bits) at the base pointer.” The instruction set-
bn is used to set this pointer.

The operand rbs (the offset to set b from the
base of the window) is also specified in quadwords.
In practice, it looks like lcc uses the base pointer
to point to the parameter area, so db[0], db[1],
db[2], etc. are parameter 0, parameter 1, parame-
ter 2, etc. for functions that are about to be called.

Since functions return values in dr0, this also
means that db[0] holds the return value from the
calling function’s point of view.

Calls and Branches in Elbrus

Calls and branches are somewhat unique in Elbrus,
they occur in two phases instead of in a single in-
struction the way it works on most architectures.
Elbrus uses the disp instruction to set up any kind
of control transfer instruction. This sets the ctptr1
register to the target address. The call instruc-
tion executes the control transfer. This allows the
pipeline to get a little bit of advance warning for
the call, allowing it to set up state for the target
function, which can be undone or ignored if the call
doesn’t execute. The documentation refers to the
ipd portion as specifying the “swap depth,” but it is
unclear what this means.

50

Return instructions happen similarly with a
return instruction first that sets up the return and
the ct instruction to execute control transfer. (This
is also used for branches, as we’ll discuss in the next
section.) Notice that the function never seems to do
anything with the return address. This is because
Elbrus has a completely separate call chain stack,
called the Procedure Chain Stack (PCS). Architec-
turally this is referenced via the Procedure Chain
Stack Pointer (PCSP) register. The PCSP is not
accessible from user mode; rather, it is set up by
the kernel similarly to how user stack memory gets
set up on a per-process basis.

The Procedure Chain Stack (PCS)

The PCSP is pretty simple—it’s a 128-bit register
with 64-bit “lo” and “hi” parts. The “lo” part con-
tains the base address, and the “hi” part contains an
index to the current frame.54 It is unclear at this
point what the “rw” field is actually used for.

(gdb) info registers pcsp_lo
pcsp_lo 0x1800c2e00002b000 1729596524238909440

base 0xc2e00002b000 214267328638976
rw 0x3 3

(gdb) info registers pcsp_hi
pcsp_hi 0x200000000060 35184372088928

ind 0x60 96
size 0x2000 8192

The Linux kernel source code shows the for-
mat of the stack frames, in the form of the
e2k_mem_crstack struct. Each frame is 32 bytes
and consists of four saved 64-bit register values, the
“lo” and “hi” parts for cr0 and cr1, respectively.
Again we are left without documentation on what
exactly the cr0 and cr1 registers do, but they must
be involved in control transfers. The Linux code
shows that cr0 “hi” contains the return address, and
cr1 contains a bunch of fields pertaining to the cur-
rent procedure’s register window.

Here is the definition of e2k_mem_crstack
(PCSP frame structure) in the E2K Linux kernel
(arch/e2k/kernel/e2k_syswork.c):

typedef struct e2k_mem_crstack {
e2k_cr0_lo_t cr0_lo; //pf?
e2k_cr0_hi_t cr0_hi; //return address
e2k_cr1_lo_t cr1_lo; //mess of fields - includes

// interrupt enable flags
e2k_cr1_hi_t cr1_hi; //more fields - includes register

// window and stuff
} e2k_mem_crs_t;

So the return %ctpr3 instruction is essentially
saying “pop the current frame off the PCS into cr0
and cr1 and stick the return address in ctpr3.”

Branching

A similar construction is used for basic branches.
Rather than flags or conditions registers like in x86
or ARM, VLIW processors often have a full set
of condition registers called “predicate” registers.
These allow the compiler to set up a sequence where
multiple comparisons can happen in advance of a
branch, and then a branch can be based on multi-
ple predicates, or a sequence of branches can occur
using the different predicate registers.

Here’s a common design pattern seen in Elbrus
branches. The following is essentially implementing
if (condition) { function(); } in C.

disp %ctpr1, 0x10d48
cmpedb,0 %dr0, 0x0, %pred0
ct %ctpr1 ? %pred0

First the disp instruction indicates to the
pipeline the control transfer target, the function ad-
dress. Then in the cmpedb instruction dr0 is com-
pared to 0 and the result placed in %pred0 (true
or false). Finally if %pred0 is true then the ct in-
struction causes a control transfer, otherwise we fall
through to the next instruction.

Conclusion
Elbrus processors are pretty capable and make de-
cent Linux machines. While the Elbrus CPU may
be under powered compared with similar Intel or
ARM server processors, given the Russian geopolit-
ical situation, these guys are going to stick around
for a while. Elbrus’s VLIW architecture and register
windowing will pose additional challenges for exploit
writers. Fortunately, the Elbrus component instruc-
tions are very RISC-like, despite the wide command
format.

In this article, we’ve explored the basics of the
instruction set and the PCS using publicly available
documentation. There’s a lot more to learn, how-
ever. We’ll need some full documentation to start
plumbing the depths of things like virtual memory,
interrupt and exception handling, and the boot pro-
cess.

54Current frame address = base + index.

51

