
22:09 A Tourist’s Guide to Reversing Renesas M16C
and the R8C, too!

by Christopher Hewitt and Niccolò Izzo

Ehilà, vicino!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the architecture of smaller devices as quickly as pos-
sible, with a minimum of fuss and formality.

Those of you who have already worked with Re-
nesas M16C or similar architectures might find it to
be a useful refresher, while those of you new to the
architecture will find that it really isn’t as strange as
you’ve been led to believe. If you’ve already reverse
engineered binaries for any platform, even C-SKY
CK803, you’ll soon feel right at home.

We’ve written this guide using a device in the
R8C/Tiny series for specific examples, but with mi-
nor differences it applies well enough to the R8C
and M16C families as a whole. For larger Rene-
sas parts, such as those used in engine control units
and portable amateur radios, you might be better
served by a different introduction. Either way, be
sure to keep reading for a case study on applying
power analysis and fault injection techniques to suc-
cessfully recover firmware from an R8C/Tiny target
with protected flash memory.

Architecture
Von Neumann
16-bit words

Registers
R0-R3: Data Registers (R0 and R1 as split 8-
bit halves.)
A0-A1: Address Registers (A0 and A1 as com-
bined 32-bit A1A0 register.)
FB: Frame Base
PC: 20-bit Program Counter
INTB: Interrupt Table (available as split 4-bit
INTBH and 16-bit INTBL registers.)
USP: 16-bit User Stack Pointer
ISP: 16-bit Interrupt Stack Pointer
SB: 16-bit Static Base
FLG: 11-bit Flag register

Instructions
89 instructions, where instruction encoding is
variable width
Opcode is 8-bit for the most frequently used
Opcode is 16-bit for the others

Instruction Set Basics

The first generation of R8C devices appeared in 2003
and were marketed as a cost-reduced alternative to
Mitsubishi’s M16C family, following the formation
of Renesas as a joint venture between the semicon-
ductor operations of Mitsubishi and Hitachi. The
R8C family features the same 16-bit CISC architec-
ture as M16C with binary level compatibility and
the internal data bus reduced to 8 bits. These fam-
ilies are also compatible at the assembly level with
the M32C family.

The instruction set is composed of 89 discrete
instructions with many common instructions only
requiring a single clock cycle. Instruction encoding
has variable length and the opcode (8-bit for the
most frequently used and 16-bit for the others) is
followed by source and destination operands speci-
fied through different addressing modes.

Instruction mnemonics can be suffixed to prior-
itize one of the following four possible instruction
formats with the assembler choosing an optimal for-
mat if one is not explicitly specified.

Generic (:G) Op-code (2 bytes), source (0-3
bytes), destination (0-3 bytes)

Quick (:Q) Op-code with immediate data (2
bytes), destination (0-2 bytes)

Short (:S) Op-code (1 byte), source (0-2 bytes),
destination (0-2 bytes)

Zero (:Z) Op-code (1 byte), destination (0-2
bytes)

There are also numerous addressing modes cat-
egorized across three different types.

General Instruction Addressing Immediate,
register direct, absolute, address register indi-
rect, address register relative, SB relative, FB
relative, SP relative

Special Instruction Addressing 20-bit abso-
lute, address register relative with 20-bit dis-
placement, 32-bit address register indirect,
32-bit register direct, control register (PC,
INTB, USP, ISP, FLG) direct, PC relative

39

Bit Instruction Addressing Register direct, ab-
solute, address register indirect, address reg-
ister relative, SB relative, FB relative, FLG
direct

Registers and Calling Convention

Be aware of different calling conventions depending
on the compiler and options used. For example, the
IAR C and C++ compiler for R8C and M16C sup-
ports a “normal” calling convention and a “simple”
one. The normal (and default) calling convention is
optimized to use registers as much as possible (with
A0, R0, and R2 used as scratch registers), then de-
fers to the stack for passing parameters. The simple
calling convention, however, only passes the first pa-
rameter through R0L, R0, or R2R0 (depending on
size), then defers to the stack for remaining parame-
ters. R0 and R2R0 are also used for returning values
from a function.

There are also subtle differences between Rene-
sas’ own compilers such as the NC30 compiler used
for the M16C and R8C families, and the NC308 com-
piler used for M32C and certain M16C family parts.
For example, NC30 preserves registers during func-
tion calls on the caller side, while NC308 does so on
the called side.33

Regardless of the compiler used, stack frame ma-
nipulation is evident by the presence of ENTER and
EXITD instructions to build and deallocate stack
frames respectively.

Memory Map

Note that different documents have conflicts. We
used a Chinese language datasheet for our figure on
page 41 where things differed.34

Also note that this article’s PoC dumps actual
code from a region that isn’t supposed to be valid
for this specific part number, but is valid for differ-
ent catalog part numbers (likely sharing the same
die).
Editors Note: We have included a die photo on
page 45 taken from processing a R5F21194, for any-
one who wishes to perform future comparisons to
other catalog part numbers.

Code Protection

The Renesas R8C/Tiny series supports a couple
of different mechanisms for flash protection. Se-
rial programmer commands to access the flash, in-
cluding erasing, are completely ignored if a cus-
tom 7-byte ID code was interleaved with entries
in the interrupt vector table at offsets 0x0FFDF,
0x0FFE3, 0x0FFEB, 0x0FFEF, 0x0FFF3, 0x0FFF7,
and 0x0FFFB. An ID code consisting of all-ones (such
as when flash cells are unprogrammed from the fac-
tory) is automatically unlocked by the boot ROM,
while any other value requires manual unlocking
with a successful ID code comparison to re-enable
flash manipulation. Parallel programmer commands
to access the flash are ignored through configura-
tion of the Option Function Select (OFS) register
located at offset 0x0FFFF by setting ROMCP1=0 and
ROMCR=1.35

Fixed Interrupt Vector Table (Flash)
0x0FFDC Undefined Instruction ID1 (0x0FFDF)
0x0FFE0 Overflow ID2 (0x0FFE3)
0x0FFE4 BRK Instruction
0x0FFE8 Address Match ID3 (0x0FFEB)
0x0FFEC Single Step ID4 (0x0FFEF)
0x0FFF0 Osc. stop, watchdog, VM2 ID5 (0x0FFF3)
0x0FFF4 Address Break ID6 (0x0FFF7)
0x0FFF8 Reserved ID7 (0x0FFFB)
0x0FFFC Reset OFS (0x0FFFF)

Finding a Target

Renesas is one of the leading suppliers of microcon-
trollers in the world but it’s not very common to
see their microcontrollers used by electronics hobby-
ists in western countries. Mass-produced commer-
cial designs spanning from inexpensive toys to fault-
tolerant automotive engine control units are much
more likely to include Renesas parts.36

One low-cost and readily accessible product con-
taining an R8C/Tiny microcontroller is the SA868
radio module with integrated power amplifier. Lim-
itations in the module’s factory firmware make it
an attractive target for modifications, but this first
requires unlocking access to the protected contents.

33The documentation is confusing here, for further see
unzip pocorgtfo22.pdf m32c90-compiler.pdf Page M-70 and unzip pocorgtfo22.pdf m32-compiler.pdf Page 59.

34unzip pocorgtfo22.pdf r5r0c00cn.pdf
35See unzip pocorgtfo22.pdf r8c-hardware.pdf section “ROM Code Protect Function” (Page 250)
36See Bypassing the Renesas RH850/P1M-E read protection using fault injection by Willem Melching.

40

SFR

0x00000

0x002FF

Reserved

0x00400

Internal RAM

*0x004FF

Reserved

0x02400

Internal ROM

(data)

0x02BFF

Reserved

0x0E000

Internal ROM

(program)

*0x0FFFF

Expanded Area

0xFFFFF

* Other catalog part numbers use different ranges for some sections.

0x0FFDC

0x0FFFF

Undefined instruction ID1 (0x0FFDF)

Overflow ID2 (0x0FFE3)

BRK instruction

Address match ID3 (0x0FFEB)

Single step ID4 (0x0FFEF)

Oscillation stop, watchdog, voltage monitor 2 ID5 (0x0FFF3)

Address break ID6 (0x0FFF7)

Reserved ID7 (0x0FFFB)

Reset OFS (0x0FFFF)

Fixed Vector Table

Figure 9: Memory Map Summary

Under the SA868 v1.1’s metal shield sits a Re-
nesas R5R0C002SN, an R8C/1B group compati-
ble part that was only available to customers in
Asia. A close approximation with a publicly avail-
able English language datasheet is the Renesas
R5F211B2SP. The role of this microcontroller in
the module is to expose a Hayes-style command
set interface to control an Auctus AT1846S RF
transceiver, which is the same part at the core of
many low-cost amateur handheld radios including
the ubiquitous UV-5R, GD-77, and MD-UV380.

Without getting too deep into radio theory, the
SA868 module has a lot more potential than it was

designed for. While the module is strictly marketed
for use in analog FM applications, the transceiver
component is used in more sophisticated digital ra-
dios using 4-FSK modulation. Once the microcon-
troller’s protected flash can be unlocked, it is possi-
ble to dump and patch the firmware or even replace
it with a custom purpose-built one to support more
useful and interesting digital voice and data proto-
cols.37

37See Delorie 2009 page 5, unzip pocorgtfo22.pdf renesasflash.pdf

41

Extracting the Application

A previously published attack for a microcontroller
in the M16C family described a successful tim-
ing attack against the boot ROM.38 The authors
demonstrated a measurable time delta between the
last cycle of the serial programming clock (SCK)
and an output pin (BUSY) asserted while ser-
vicing programmer commands that could be used
to iteratively determine individual bytes of an ID
code. This approach might have been viable for the
R5R0C002SN since the R8C family is a close relative
of the M16C family, if not for the lack of an equiv-
alent pin indicating busy state. It is, however, still
possible to demonstrate whether or not the timing
attack is portable to this target by extracting the
same information through power analysis of the ID
code verification process.

A relationship to power consumption can be
measured by removing the microcontroller from cir-
cuit and inserting a low value shunt resistor in-
line with the power supply. Experimentation with
added capacitance or changing shunt resistor posi-
tion helps establish which conditions provide the
cleanest measurements. During any unsuccessful
unlock attempt, voltage measurements at the sup-
ply pin expose seven evenly spaced segments, corre-
sponding to each byte of the ID code. This obser-
vation suggests that the R5R0C002SN’s boot ROM
executes comparisons in constant time and is not
vulnerable to the same timing attack. Brute force
attempts are also discouraged by silently ignoring
unlock requests after a few unsuccessful attempts.
On a target with a known ID code, leakage from
successful unlock attempts suggests that valid com-
parisons are performed twice, possibly to mitigate
against power glitches.

Readers with experience in side channel analysis
might be tempted to calculate Pearson correlation
coefficients in order to match ID code attempts with

power trace data in hopes of leaking bits or bytes
from the real ID code, but the approach seemingly
does not work here. Whether the result of high clock
jitter, inadequate ADC resolution, or just bad luck,
no apparent correlation between ID code attempts
and resulting power trace can easily be identified.

Fault injection is another tool at our disposal for
extracting protected flash memory contents. Long
pioneered by satellite television enthusiasts explor-
ing conditional-access modules, fault injection at-
tacks traditionally manipulate clocks or supply volt-
ages as a mechanism for introducing unintentional
behavior to a system, such as causing instructions to
be skipped or register contents to be modified. De-
vices like the ChipWhisperer-Lite have made these
kinds of practical attacks significantly more ap-
proachable for hobbyists, but don’t disregard the
price point and flexibility of a simple microcontroller
combined with a fast switching MOSFET to mo-
mentarily bridge a supply voltage to ground poten-
tial.

Each microcontroller in the R8C/Tiny family
has an integrated ring oscillator running at roughly
8 MHz further divided by 32 for use as the system
clock during boot ROM execution. This clock is not
exposed externally, so clock glitching is not the most
convenient approach. The high degree of jitter from
this internal clock combined with the double check of
the ID code observed in power analysis means that
landing a voltage glitch twice during an unlock at-
tempt, with the correct timing, might be excessively
difficult. But let’s consider for a moment if a suc-
cessful ID code verification is even necessary prior
to accessing flash programming commands. Maybe
it’s really only a formality intended for diligent en-
gineers who rigidly follow the rules outlined in the
hardware manual.

It is clear from the location of the fixed inter-
rupt vector table that the ID code is stored on the
last page of flash and clear from the programming
guide that there is a flash page read command in
the boot ROM. It’s not unreasonable to at least try

38See Hacking Toshiba Laptops by Serge Bazanski and MichałKowalczyk.

42

repeatedly reading the final page of flash without
any prior ID code verification while simultaneously
sweeping glitches over the microcontroller’s power
supply with varied time offsets. The programming
interface’s serial transmit pin can even be used as
a trigger to anchor glitches around the page read
commands.

Some experimentation is required to find glitch
pulse lengths and time offsets that don’t stall the
microcontroller yet still influence boot ROM be-
havior. Keep in mind that variations in capaci-

tance and even temperature can easily impact re-
sults and repeatability. Since thousands of glitch
attempts might be required for a single success, it’s
best to keep each attempt as short as possible: Skip
unnecessary communication steps by directly using
the boot ROM’s flash programming protocol and
only perform hard resets when the microcontroller is
completely stalled and not responding. With a little
luck, our trusty microcontroller confidently returns
a full page of flash data, rather than nothing.39

Glitching an unknown programmed R5R0C002SN sample from AliExpress

[*] bootrom: VER .1.20
[*] injecting faults ...
<omitted >
[?] dumped page - width: 37.890625 offset: -44.921875 ext_offset: 5420
0000 FF00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF10 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF20 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF30 ff ff ff ff 53 fb 00 00 53 fb 00 00 53 fb 00 00S...S...S...
0000 FF40 53 fb 00 00 53 fb 00 00 b4 fa 00 00 53 fb 00 00 S...S.......S...
0000 FF50 53 fb 00 00 53 fb 00 00 aa f8 00 00 53 fb 00 00 S...S.......S...
0000 FF60 53 fb 00 00 53 fb 00 00 53 fb 00 00 53 fb 00 00 S...S...S...S...
0000 FF70 53 fb 00 00 1b fb 00 00 ff ff ff ff ff ff ff ff S...............
0000 FF80 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FF90 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFA0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFB0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFC0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 FFD0 ff ff ff ff ff ff ff ff ff ff ff ff 53 fb 00 4eS..N
0000 FFE0 53 fb 00 6a 53 fb 00 00 53 fb 00 46 53 fb 00 74 S..jS...S..FS..t
0000 FFF0 50 fb 00 53 53 fb 00 59 53 fb 00 54 49 e0 00 f7 P..SS..YS..TI...
[!] valid idcode - 4e6a4674535954
[*] dumping entire flash ...
[*] block 0 (0 x0e000 - 0x0ffff):
0000 E000 7b 60 5e 7c 65 3d 3f 70 7f 7d 77 2f 1b 6e 1f 17 {‘^|e=?p.}w/.n..
0000 E010 f4 85 0f f4 92 0f f4 ba 0f f4 d5 0f f4 e1 0f f4
0000 E020 02 10 f4 ec 0f f4 0f 10 f4 2a 10 f4 56 10 f4 43*..V..C
<omitted >
[*] block 1 (0 x0c000 - 0x0dfff):
0000 C000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 C010 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0000 C020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] block a (0 x02400 - 0x027ff):
00002400 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002410 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002420 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] block b (0 x02800 - 0x02bff):
00002800 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002810 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00002820 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
<omitted >
[*] done

39See the Jupyter notebook unzip pocorgtfo22.pdf r8c-glitch.ipynb

43

▄▄▄▀▀▀▓▓▄ R8C/Tiny BootROM ID Code Bypass - Greetz to ShmooCon Møøse Crew
 ▓▓▓▌ ▄▄▄▄▄▄▄ ▄▄ ▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄▄
 ▄▓▓▌ ▓▓▌ ▐▓▓▓▓ ▐▓ ▓▓▌ ▓▓▓░ ▓▌█▓▄ ▓▓▓░
 ▓▓▌ ▓▓▌ ▓▓▌▄▄▄▄▄ ▐▓ ▀▓▓▄ ▐▓ ▓▓▌▄▄▄▄▄ ▀▓▓▓▓▄ ▓▌ ▓▓▄ ▀▓▓▓▓▄
 ▓▓▌ ▓▓▄ ▓▓▌ ▐▓ ▓▓▌▐▓ ▓▓▌ ▀▀▓▓▓▄ ▓█ ▓▓▄ ▀▀▓▓▓▄
 ▓▓▌ ▀▓▄ ▀▓▓▄▄▄▄▄ ▐▓ ▀▓▓▓ ▀▓▓▄▄▄▄▄ ▄▄▄▄▄▄▄▓▓▀ ▓█ ▄▄▓▓▓▄▄▄▄▄▄▄▓▓▀
 ▀▓▄
 ▀

Successful glitches don’t always return meaning-
ful data, but ID codes can be assembled from their
expected offsets in the page, then verified through an
unlock attempt. Eventually you’ll find a match and,
once successfully unlocked, the entire flash memory
can be dumped or erased and reprogrammed. If
it looks like some data is missing, try reading ad-
ditional flash pages that aren’t officially supported
by the part number since there’s a good chance the
same internal die is used by several part numbers.40

Proceeding with Analysis
Once a firmware image is safely recovered, you’ll al-
most certainly want to inspect how it works. M16C
isn’t as esoteric as it might seem and there are ac-
tually a few different options for analysis. IDA Pro
provides a disassembler for the architecture and Bi-
nary Ninja has some support by way of a third-party
plugin.41 If you’re averse to commercial software
don’t forget about GNU Binutils which supports
M16C and R8C through the m32c-elf target.

;; Recovered firmware through m32 -elf -
objdump

0000 fcca <.data+0xd8ca >:
fcca: eb 40 32 06 ldc #1586 ,isp
fcce: c7 02 0a 00 mov.b:s #2,0xa
fcd2: b7 04 00 mov.b:z #0,0x4
fcd5: b7 0a 00 mov.b:z #0,0xa
fcd8: eb 30 80 00 ldc #128,flg
fcdc: eb 50 b2 05 ldc #1458 ,sp
fce0: eb 60 00 04 ldc #1024 ,sb
fce4: eb 20 00 00 ldc #0,intbh
fce8: eb 10 dc fe ldc #-292, intbl
fcec: fd 64 fc 00 jsr.a 0xfc64
fcf0: 75 cf ba 04 mov.w:g #1586 ,0 x4ba
fcf4: 32 06
fcf6: 75 cf bc 04 mov.w:g #128,0 x4bc
fcfa: 80 00
fcfc: d9 0f be 04 mov.w:q #0,0x4be
fd00: fd a2 fa 00 jsr.a 0xfaa2
fd04: eb 70 00 00 ldc #0,fb
fd08: fd 7a f5 00 jsr.a 0xf57a
fd0c: f5 03 00 jsr.w 0xfd10
fd0f: fb reit
fd10: d9 10 mov.w:q #1,r0
fd12: 6e fd jne 0xfd10
fd14: f3 rts

Alternatively, a Ghidra third party plugin cre-
ated recently is capable of disassembling most in-
structions and may help jumpstart new reverse en-
gineering projects through integration with Ghidra’s
processor independent decompiler.42

1 ;----------------------------------
; after reset , this program will start

3 ;----------------------------------
ldc #((topof istack)+(sizeof istack)),

isp ;set istack pointer
5 mov.b #02h,0ah

mov.b #00h,04h ;set processor mode
7 mov.b #00h,0ah

.if __STACKSIZE__ != 0
9 ldc #0080h,flg

; set stack pointer
11 ldc #((topof stack)+(sizeof stack)),sp

.else
13 ldc #0000h,flg

.endif
15 ldc #__SB__ ,sb ;set sb register

17 ; If the destination is INTBL or INTBH ,
; make sure that bytes are sent in order

19 ldc #((topof vector) >>16)&0FFFFh ,INTBH
ldc #(topof vector)&0FFFFh ,INTBL

21
<omitted >

23
;===================================

25 ; Call main() function
;-----------------------------------

27 ldc #0h,fb; for debugger

29 ; Remove the comment when you use
; global class object

31 ; Sections C$INIT will be generated
; .glb __CALL_INIT

33 ; .call __CALL_INIT ,G
; jsr.a __CALL_INIT

35
.glb _main

37 .call _main ,G
jsr.a _main

Whichever option you pick, be sure to identify
the correct entrypoint for the binary by referencing
the reset vector in the fixed interrupt vector table
at the very end of flash memory.

40See The Secret of R8C/M11A and M12A at the RVF/RC45 blog.
41git clone https://github.com/whitequark/binja-m16c
42git clone https://github.com/silverchris/m16c

44

Die photograph by Travis Goodspeed

An Unexpected Outcome
News of the effort to repurpose the SA868 with cus-
tom firmware eventually found its way to the com-
pany producing the radio modules, NiceRF Wireless
Technology. An amateur radio enthusiast in China,
Amo Xu, made a compelling case for the company
to release an intentionally user-programmable vari-
ant of the module. Shortly after their discussion,
the company began offering the SA868S Open Edi-
tion module. This variant is erased after quality
assurance, guaranteeing the module is unlocked for
reprogramming.

The new SA868S, version 2.0, is notably different
from previous versions in that the microcontroller
has been replaced with one from a different Renesas
microcontroller architecture family, RL78, which is
not vulnerable to the attack presented in this arti-
cle. The RL78 family has, however, been explored
in some detail in the context of the PlayStation 4
gaming console and several useful tools already exist
for working with that platform, including an imple-
mentation of the debugging protocol and third party
plugins for IDA Pro and Ghidra.43

While not as common as it should be, hardware
reverse engineering occasionally leads to mutually
beneficial outcomes with a manufacturer. A deep
dive into an unfamiliar microcontroller architecture
to improve a product’s capabilities led to a manufac-
turer removing obstacles for experimentation. The
availability of the SA868S Open Edition paves the
way for user customizable firmware and has already
motivated the creation of a free and open source al-
ternative firmware granting complete control of all
registers in the underlying transceiver chipset, en-
abling use of digital protocols such as APRS and
M17.44

We hope that you’ve enjoyed this little guide to
Renesas M16C and R8C, and that you’ll keep it
handy when reverse engineering firmware from those
platforms.

43See PS4 Aux Hax 2: Syscon at Fail0verflow.
44git clone https://github.com/OpenRTX/sa8x8-fw.git

45

