
22:06 Mitigations are a reverser’s friend; or, Abusing XFG
by Aleksandar Nikolic

Control flow integrity protections, with its vari-
ous implementations, have been the latest itera-
tion of compiler mitigations for memory corruption
exploits. They hope to make code reuse attacks
more difficult or impossible. Implementation details
vary, but all boil down to restricting possible valid
targets of indirect calls. LLVM’s is called “Con-
trol Flow Integrity,” Grsecurity has “Reuse Attack
Protector” and Microsoft’s is called “Control Flow
Guard” (CFG).

The core idea behind Microsoft’s CFG is ensur-
ing that function pointers can only point to valid
function entry points before being used to perform
a function call. The compiler inserts checks that,
during runtime, inspect every indirect call instruc-
tion and terminate the process if the target isn’t a
valid and known function start.

Putting aside the completeness or effectiveness
of this mitigation, let’s ask whether we can glean
some extra information about the code itself by the
presence of these checks. As Deroko points out in
Control Flow Guard Instrumentation,21 CFG mech-
anisms can serve as a way to hook all indirect calls
in a binary without specifically looking for them in
advance. They can also precisely identify function
entry points, which is not always a trivial task.

With the release of Windows 11, Microsoft is in-
troducing another iteration of control flow integrity
mitigation called “eXtended Flow Guard” or XFG.
In short, it further restricts targets of indirect calls
to not only valid function entry points, but to a
subset of functions that have a particular signature
consisting of return value type, number and types
of parameters and other function properties.

Surely, this added metadata can somehow aid us
in our reverse engineering process. To see how, we’ll
need to understand the implementation details.

What is XFG and how it works

Extended Flow Guard is introduced as a com-
piler extension that can be enabled via /guard:xfg
switch that is available in MS’s C and C++ compil-
ers since at least the 19.27.29112 version of Visual
Studio 2019. It hasn’t seen full support or much
public use until release of Windows 11. Consider an
example:

int test(){
return 0;

}

int (* cfgTest [1])() = {test};

int main(){
cfgTest [0]();

}

This code has a simple function pointer array
cfgTest and makes a call to test using that func-
tion pointer. If compiled with cl /Zi /guard:xfg
simple.c its assembly looks a little odd.

1 sub rsp , 38h
mov eax , 8

3 imul rax , 0
lea rcx , cfgTest

5 mov rax , [rcx+rax]
mov [rsp+38h+var_18], rax

7 mov r10 , 0D30527475E523070h
mov rax , [rsp +38h+var_18]

9 call cs:__guard_xfg_dispatch_icall_fptr
xor eax , eax

11 add rsp , 38h
retn

21unzip pocorgtfo22.pdf cfghook.zip

23

This is some peculiar code. There is no indi-
rect call to function test, rather there’s a call to
__guard_xfg_dispatch_icall_fptr with certain
arguments. The function pointer is actually saved
in rax and an odd-looking constant is moved into
r10 before __guard_xfg_dispatch_icall_fptr is
called. This odd-looking constant is what we will
call an XFG hash. Interestingly, if we take a look
at test function’s prologue on page 25, we’ll see
(almost) the same data.

Long story short, before invoking the target
function, __guard_xfg_dispatch_icall_fptr will
check that the hash in r10 matches the hash located
right before the function. If they don’t match, pro-
cess is terminated.22

This ensures that only legal target functions can
be executed at this particular indirect function call.
The next obvious question is: how is this function
hash derived? That brings us to the core idea be-
hind XFG.

If we think about it, no matter how an indi-
rect call instruction happens to be generated by the
compiler, several things are true for all the possi-
ble, valid, target functions in a valid program. All
possible target functions must have the same num-
ber of arguments, the same calling convention, same
argument types, same return value type and so on.
Even if the compiler doesn’t know of all possible tar-
get functions in advance, it must know all of these
facts about those targets. It can, then, generate a
unique representation of those facts when it encoun-
ters an indirect function call. On the other hand, for
every function that could be a possible target for in-
direct call, the same unique representation can be
calculated and those two can be compared during
runtime.

This unique representation of function prototype
information is what constitutes an XFG hash.

How is an XFG hash generated?

Francisco Falcon over at Quarkslab has already done
the hard work of reverse engineering most of XFG
internals. Their extended writeup provides a num-
ber of examples.23 XFG hash generation happens
in the cl.exe compiler’s frontend c1.dll and re-
volves around gathering function prototype informa-
tion and using the SHA256 hashing algorithm on it
while following certain rules. A list of function prop-

erties that figure into the XFG hash is (as far as C
code is concerned at least) as follows:

• number of arguments

• the types of individual arguments

• type of return value

• whether the function is variadic or not

• the calling convention

When preparing to calculate the hash, each of
these is represented in a specific way. Some are sim-
ple constants, while others have more structure and
are often recursively defined. For example, the num-
ber of arguments is just represented as a 32-bit in-
teger, the calling convention appears to be a 16-bit
constant, and variadic is one byte boolean. Return
value and argument types, on the other hand, are
more complicated.

Those consist of values specifying type qualifiers
(const, volatile), type groups (primitives, point-
ers, structs/unions/enums), and values according to
the type group. Calculating values for primitive
types are the simplest and are just a table lookup:

"void" :0xe,
"char" :0x1,
"signed char" :0x1 ,
"unsigned char" :0x1,
"__int8" :0x1,
"char8_t" :0x1 ,
"__int16" :0x6 ,
"short int" :0x6 ,
"unsigned short int" :0x86 ,
"float" :0x11 ,
"int" :0x7,
"__int32" :0x7 ,
"unsigned int" :0x87 ,
"long int" :0x10 ,
"unsigned long int" :0x8a ,
"double" :0x12 ,
"__int64" :0x8 ,
"long double" :0x12 ,
"long long int" :0x8,
"unsigned long long int" :0x88 ,
"unsigned long long" :0x88 ,

Notice that there are several distinct primitive
types that have the same value. Structs, unions, and
enums are treated the same, and their actual (ver-
batim text) names are included as part of a hash
calculation.

22A great in-depth description from Connor McGar is available as Exploit Development: Between a Rock and a (Xtended
Flow) Guard Place: Examining XFG.

23See How the MSVC Compiler Generates XFG Function Prototype Hashes by Francisco Falcon.

24

.text :0000000140001008 dq 0D30527475E523071h

.text :0000000140001010

.text :0000000140001010 ; ============= S U B R O U T I N E =================================

.text :0000000140001010

.text :0000000140001010

.text :0000000140001010 ; int test (...)

.text :0000000140001010 test proc near ; DATA XREF: .rdata:__guard_fids_table

.text :0000000140001010 ; .data:cfgTest

.text :0000000140001010 xor eax , eax

.text :0000000140001012 retn

.text :0000000140001012 test endp

Figure 4: test Function’s Prologue

Pointers of any kind are the most complicated,
as their value is the hash of the type they point to,
requiring recursive evaluation.

This can look a bit confusing and — although
it’s covered in great detail in the referenced Quark-
slab article — we’ll illustrate the process with the
simplest example. We’ll add a void pointer as an
argument to test from before:

int test(void *arg);

First, there’s only a single argument to this func-
tion, so we will append “\x01\x00\x00\x00” to our
data to be hashed (data0). Second, we need to con-
sider function arguments, calculate their hashes, and
append them to data to be hashed. There is only
one argument and it’s a pointer without qualifiers.
Starting a new hash (data1), we append “\x00” for
qualifiers, “\x03” for type group but then we need to
consider the type of pointer and calculate that hash
separately. Starting yet another hash calculation
(data2), we append “\x00” for qualifiers, “\x01” for
type group and finally “\x0e” for primitive type.
Calculate the SHA256 of data2 and append its first
8 bytes to data1 that completes necessary data for
calculating first argument hash. Hash data1 and
append the first 8 bytes to data0. That concludes
the argument part of the hash. Next is whether
the function is variadic, so we append “\x00” and
what the calling convention is, which defaults to just
“\x01”. The last segment is the return value type
which is an integer primitive, so it’s simply “\x00”
for qualifiers, “\x01” for type group and finally 0x7
for a primitive type. The hash of that is appended
to data0.

Putting that together gives us the following, with
all SHA256 results truncated to the first eight bytes.

sha256("\x01\x00\x00\x00"
+sha256("\x00\x03"+sha256("\x00\x01\x0e"))
+"\x00"+"\x01"+sha256("\x00\x01\x07"))

After some final transformations, the result of
the operation is the “719a5e103606e1b2” value that
appears before the test function in the binary.

An implementation of this algorithm, in Python,
that parses a given C function prototype and gen-
erates its corresponding hash can be found as an
attachment.24

24unzip -p pocorgtfo22.pdf xfg-scripts-args.tgz | tar -xzvf- gen_hash_from_ast.py

25

Using XFG to resolve indirect jumps
Now that we know how XFG works, we can consider
how it can be of use as a reverse engineering aid.

The first, and most obvious idea is that it
can reduce the uncertainty of analyzing indi-
rect calls. Since all indirect calls in an XFG-
protected binary will inevitably be dispatched
through __guard_xfg_dispatch_icall_fptr that
must match callsite’s hash and target function’s
hash, it should be possible to enumerate all possible
targets completely statically (assuming all possible
linked code is known/available for analysis).

Let’s illustrate this with an example. Through-
out the rest of the article, we’ll use ntdll.dll bi-
nary from Windows 11 for illustrations and testing.
If we go to function ‘LdrQueryProcessModuleInfor-
mationEx’ and take a look at the following piece of
assembly:

18000174e 488 d04bf
lea rax , [rdi+rdi *4]

180001752 49 ba7048da56963e ...
mov r10 , 0x85f13e9656da4870

18000175c 498 b44c118
mov rax , qword [r9+rax *8+0 x18]

180001761 ff15a9181900
call qword

[rel __guard_xfg_dispatch_icall_fptr]
{j_sub_1800aa130}

180001767 4c8d0df2b71200
lea r9, [rel data_18012cf60]

While we don’t know without debugging
what possible target this XFG dispatch call
might have, we can see that its hash must
be 0x85f13e9656da4871 (the 1 is added at the
end of the supplied hash by dispatcher). If
we search the binary for functions that have
this XFG hash, we’ll find many results: Ldr-
QueryModuleInfoLocalLoaderUnlock, LdrShut-
downThread, LdrShutdownProcess, RtlDetect-
HeapLeaks, TpTrimPools, RtlCleanUpTEBLang-
Lists, RtlFreeThreadActivationContextStack,
LdrProcessInitializationComplete, RtlFlush-
Heaps, RtlReleasePebLock, RtlAcquirePebLock,
LdrFastFailInLoaderCallout, . . .

Obviously, from the function names, not all of
these make sense as possible targets for this indirect
call because of their differing semantics, but there’s
a good chance that all with Ldr prefix are actual
possible targets.

Why are there so many hash hits that are un-
likely to be real targets? It’s probable that the tar-

get function prototype in this case is very simple,
and matches many other functions. In fact, hash
0x85f13e9656da4871 represents the simplest pos-
sible case of ‘void fname()’. As another example,
the TppCallbackEpilog function has the following
indirect call:

18001766e 488 b8eb8000000
mov rcx , qword [rsi+0xb8]

180017675 4c89aeb8000000
mov qword [rsi+0xb8], r13 {0x0}

18001767c 488 b4108
mov rax , qword [rcx+0x8]

180017680 49 ba70125178f527 ...
mov r10 , 0xa6d127f578511270

18001768a 488 b4008
mov rax , qword [rax+0x8]

18001768e ff157cb91700
call qword

[rel __guard_xfg_dispatch_icall_fptr]
{j_sub_1800aa130}

Looking up the target hash, 0xa6d127f57851-
1271, in the binary yields: TppSimplepFree,
TppWorkpFree, TppAlpcpCallbackEpilog, Tpp-
JobpCallbackEpilog, TppFreeWait, TppTimer-
pFree, TppIopFree, TppAlpcpFree, TppJobp-
Free, TppWorkCancelPendingCallbacks, TppIop-
CancelPendingCallbacks.

All of these look like possible real targets given
their context.

So while not completely precise, this simple
static analysis that relies on XFG hashes definitely
sheds some light on indirect calls that might other-
wise remain completely unresolved.

Attached is a Binary Ninja plugin that annotates
indirect calls with information gained by XFG anal-
ysis.25

25unzip -p pocorgtfo22.pdf xfg-scripts-args.tgz | tar -xzvf- xfg_analyzer.py

26

Brute forcing XFG hashes for function
prototype recovery
Another, more involved, idea stems from the fact
that XFG hashes aren’t random and actually en-
code function prototypes. Surely, there would be a
way to recover at least some of that information and
make use of it.

While it is not possible to reverse the hash back
to function prototype directly, it is perfectly feasi-
ble to precompute a lookup table for all possible
function prototypes (up to certain number of argu-
ments). If we ignore structs, unions and enums for
a second, there are only a fairly small number of
primitive types. In fact, if we remove the duplicates,
there’s a total of only 12 primitive types (with dis-
tinct values as far as XFG generation is concerned).
Adding in type qualifiers (const, volatile) and
pointers, a bit of simple combinatorics tells us that
total number of all possible function prototypes is
roughly (12 ∗ 3)num_args + 1 .

This gets big very fast as we increase the number
of arguments, but the whole list is precomputed in
minutes for functions up to three arguments.

import sys
2 import itertools

from jinja2 import Template
4 types = ["void", "char", "short int",

"unsigned short int", "float",
6 "int", "unsigned int", "long int",

"unsigned long int", "double",
8 "long long int", "unsigned long long"]

add all types as pointers
10 types += [x + " *" for x in types]

and as consts
12 types += ["const " + x for x in types]

and as volatiles
14 types += ["volatile " + x for x in types]

16 j2_template = Template("""
{{ ret_type }} fname({%- for param_type in

param_types -%} {{ param_type }} arg{{loop
.index }}{{ "," if not loop.last }} {%-
endfor -%});

18 """)

20 max_func_params = 3
f = open(sys.argv[1], "w")

22 i = 0
for ret_type in types:

24 for pn in range(4, max_func_params +1):
for c in itertools.product(types ,

26 repeat=pn):
f.write(j2_template.render ({"ret_type"

: ret_type , "param_types": c}))
28 i+=1

f.close ()

27

This code uses a jinja2 template to generate an
exhaustive list of all possible function prototypes
starting with given primitive types. These generated
prototypes can then be fed into the hash generation
algorithm to compile a lookup table.

So, does this work? We’ll test this on ntdll.dll
again. This particular version of the DLL has a total
of 1564 functions that have an XFG hash associated
with them. Out of those 1564, there are a total of
995 unique XFG hashes. After lookups, this sim-
ple matching has identified function prototypes for
131 unique hashes, corresponding to a total of 294
functions!

By simply precomputing all possible function
prototypes up to three parameters (using nothing
target specific, only primitive types) we were able
to recover precise function prototypes for about 13%
of unique hashes in ntdll.dll. Figure 5 has some
examples.

The proof-of-concept works, but there are a cou-
ple of reasons why we didn’t get a higher hit rate.
First and most obvious is that many functions sim-
ply have more than three arguments, but even bigger
factor is the fact that ntdll.dll code heavily relies
on use of structures, enums, and structure pointers.
Since hashes for struct, union, and enum types in-
clude their names directly, straight up brute forcing
isn’t practical, but seeding certain (domain specific)
names would greatly increase the hit rate. XFG
hash calculation implementation supports structs in
function prototypes, and since structs, enums, and
unions are treated the same, all we need to do to
add struct names is to expand the list of primitive
types. Adding struct in_addr to list of primitive
types leads to following result:

7139 d252a1b76de8 char *func(
const struct in_addr *arg1 , char *s)

This calculated hash matches the XFG hash for
RtlIpv4AddressToStringA. By adding target spe-
cific, commonly used, structs to prototype gener-
ation we can greatly increase the number of found
hashes at the expense of a larger lookup table. Since
structures and other type information are sometimes
publicly available even if function prototypes are
not, this allows for very precise function prototype
recovery.

How do we know that these results are actu-
ally correct? Let’s take another look at an example
where we do know the function prototype. Function

‘RtlSetUserValueHeap’ has four arguments. Binary
Ninja guesses its prototype to be:

void* const* RtlSetUserValueHeap(
int64_t arg1 , int32_t arg2 ,
int64_t arg3 , int64_t arg4);

Similarly, IDA guesses:

char __fastcall RtlSetUserValueHeap(
__int64 a1 , unsigned int a2,
__int64 a3 , __int64 a4)

This function’s XFG hash is 0xc76c3600585a-
f171 and a lookup reveals the following function
prototype:

char RtLSetUserValueHeap(
void *arg1 ,unsigned long int arg2 ,
void *arg3 , void *arg4);

Notice how both Binary Ninja and IDA can-
not know that some of the arguments are point-
ers. This simple fact adds a lot of information that
greatly aids further function analysis and decompi-
lation. And what about correctness? While source
for ‘RtLSetUserValueHeap’ isn’t available, it is reim-
plemented in ReactOS where its function prototype
is:

BOOLEAN
NTAPI
RtlSetUserValueHeap(

In PVOID HeapHandle ,
In ULONG Flags ,
In PVOID BaseAddress ,
In PVOID UserValue

);

While the prototype gathered from XFG analysis
lacks some extra annotations, the types themselves
match precisely!

In Conclusion
Even though mitigations like XFG pose a real chal-
lenge when it comes to exploitation, it sometimes
pays off to take a step back and consider the possible
side effects that can be handy in other ways. We’ve
shown that a very simple lookup table can recover
a treasure trove of information that can be helpful
when reverse engineering an XFG-protected binary.
As XFG adoption spreads to code other than Mi-
crosoft’s, this can definitely lead to some interesting
discoveries.

28

char RtlGetSecurityDescriptorRMControl(void *arg1 , char *arg2);
unsigned long int RtlNumberOfSetBitsUlongPtr(unsigned long long int arg1);
char RtlEqualWnfChangeStamps(unsigned long int arg1 , unsigned long int arg2);
unsigned long int RtlSetProxiedProcessId(unsigned long int arg1);
void RtlWnfDllUnloadCallback(void *arg1);
void *memchr(const void *arg1 , int arg2 , unsigned long long arg3);
char *strchr(const char *arg1 , int arg2);
unsigned long long strcspn(const char *arg1 , const char *arg2);
unsigned long long strnlen(const char *arg1 , unsigned long long arg2);
char *strpbrk(const char *arg1 , const char *arg2);
char *strrchr(const char *arg1 , int arg2);
unsigned long long strspn(const char *arg1 , const char *arg2);
char *strstr(const char *arg1 , const char *arg2);
int tolower(int arg1);
int WinSqmCommonDatapointSetDWORD64(

unsigned long int arg1 , unsigned long long arg2 , unsigned long int arg3);
int WinSqmCommonDatapointSetString(

unsigned long int arg1 , const unsigned short int *arg2 , unsigned long int arg3);
int WinSqmGetInstrumentationProperty(

const unsigned short int *arg1 , const unsigned short int *arg2 ,
unsigned short int *arg3 , unsigned long int *arg4);

int WinSqmIsOptedInEx(unsigned long int arg1);
void AlpcGetCompletionListLastMessageInformation(

void *arg1 , unsigned long int *arg2 , unsigned long int *arg3);
unsigned long int DbgPrompt(const char *arg1 , char *arg2 , unsigned long int arg3);
char RtlQueryProcessPlaceholderCompatibilityMode ();
char RtlSetProcessPlaceholderCompatibilityMode(char arg1);
char RtlIsNonEmptyDirectoryReparsePointAllowed(unsigned long int arg1);
char RtlIsZeroMemory(void *arg1 , unsigned long long arg2);
unsigned short int RtlLogStackBackTrace ();
void *RtlLogStackTrace(unsigned long int arg1);
void RtlReleaseStackTrace(void *arg1);

Figure 5: Example Prototypes from ntdll.dll

29

