22:02

Lately I've been writing a book on extracting
firmware from locked microcontrollers; rather, try-
ing to write that book, because I fell into a rabbit
hole of mask ROM reverse engineering. So for a few
months, instead of writing prose, I wrote a tool in
C++ for extracting bits from ROM photographs and
a matching tool to decode those bits into logically or-
dered bytes, suitable for disassembly or emulation.!

Let’s begin with a little background: SRAM,
DRAM, Flash ROM, and EPROM memory tech-
nologies hold bits invisibly as some form of electri-
cal charge. Mask ROM is different, in that bits are
written into one of the lithography masks that pro-
duce the chip. This is very expensive per unique
program, but very cheap per chip.

Many chips include a nice, orderly grid of bits
that contain code or data. Sometimes this is en-
coded in metal vias, which you can see from the
surface of a decapsulated chip. Sometimes bits are
in the diffusion layer, and you need to remove the
upper layers of the chip with hydrofluoric acid to ex-
pose them. And sometimes bits are implanted into
the doping difference between P and N silicon, re-
quiring a procedure called a “Dash Etch” to stain a
color difference into the bits after exposing them.

A Mask ROM Bit Extraction Tool

by Travis Goodspeed

Whatever the chemical procedure, the end re-
sult from the lab is a panorama photograph of the
ROM under high magnification, with bits visible to
the naked eye. Like the ones on page 6, you will
see that some bits are bright while others are dark.
These are our ones and zeroes!

If you are more patient than I, you might type
these in manually, reading the ones and zeroes off
the page in the same way that as children we typed
BASIC program listings out of magazines. Instead,
it’s nice to let a computer do that work, with a hu-
man providing a minimum amount of guidance.

Prior Work

The first of these tools to be published was Rompar
by Adam Laurie in 2013.2 It’s a GUI application
in Python, in which the operator draws a grid to
mark the bit positions. OpenCV takes care of a bit
of image preprocessing, to make the bits stand out
by tossing away unneeded color channels.

Published later in 2019, but perhaps written ear-
lier, is Chris Gerlinsky’s Bitract.> The user first
loads an image and then describes an “area of inter-
est,” a box containing so many rows and columns of
bit positions.

These tools certainly work, but they have some
problems that frustrated me enough to write some-
thing new.

Bitract requires a commercial image processing
library to compile in Borland C++. As a Windows
program, it ignores command line parameters and
has no CLI. As a Python script, Rompar makes too
much use of command-line parameters, requiring the
row and column count of each bit grouping to be de-
fined before startup rather than worked out on the
fly.

Both Rompar and Bitract expect bits to be
perfectly ordered in a grid, which is great for re-
ducing the operator’s labor, but difficult on very
large projects, where camera or stitching distortions
might move something just barely out of the grid.
It’s also inconvenient on some 4-bit microcontrollers,
where the final group of bits sometimes has fewer
columns than the others.

lgit clone https://github.com/travisgoodspeed/maskromtool

2git clone https://github.com/AdamLaurie/rompar

3git clone https://github.com/SiliconAnalysis/bitract

.,

Figure 1: Font ROM from a TMP47C434N

. e — e .IK
- L ellelelaiet . T i
L . uﬂllununlj lug
- - - g 3
45 e - ofelele Dl m
Tz R R
- - ﬂ P L] - <
feiore) latas {RNRNRNAARNRNR (alalels'vialalulals's laialalels
- - B . . CICA]
/2 tnsnaa e X <E=n FirblriEi sl et
= 1 - .Hl ol = mlL-
wlas = IIIII > m l""“..
X - byt K
2 R Y i EEE
e . e - llltl]l l]”:ll.l.
—_— e p—
lﬂmllan e e rﬂu" _}E Il.lr ‘ajefeye ols X
m..l*unu.ﬂqllsl ll_l._m.l]ﬁlun Inf Mwll.lrl.llll m hﬂ.ﬂn“ “"1 8
| i L e n - 1]
. 1 Illl lrw.l .TJIIJIIII lalelalelelelels s 1
o 1hex e lllllﬂ e
- 1pay o m.l - ta|
s msasas At e i e e e e e e lalaleleisiale i
L
Iu olalalelelels
=== =
lelelel ._.mlr-_ =
e sjsnsls mmanale w.mk
... ojsle l"Hl -
-_— —
]l_l._lrl.‘l]ll
o - - olale
e e et 1 3}
e 1°1° e - 1 8
- - = o _-.._.tu et 4
talnis Lelslsiaislsl "u n“ - lnl_._...l.._"
-
R e A A A
JUN =I===H L L
e m:.&wgmﬂmmumm .lﬂ e
ols s's's'sls s J_JTDJJJIJ?J e e e e e
- 4 {
clelsisisse st aiaee R :i..ﬁ..w:::..
g Lfrl jsejeieieise)
e e et o ot o B ..:.:._l "1 Ex - rﬁ
siepie i i -
[—
bt ot bt e ﬂ (SN -—
lel
s e e el el el HEHE RHEEEH
b o BUNC R B B b 0)i o B T0 N B AL MR wiw '3)). ' i o 1 LALLM

Bitract uses the mouse wheel to zoom, which is
infuriating on a multitouch pad that ought to be
able to both zoom and pan. Rompar, by contrast,
traps the user at the native resolution of the image.

I write these things not to criticize their work.
These were damned handy tools for their day. I just
think that things could be more convenient.

A Fresh Start

So I began from scratch, with a design on a paper.

For starters, I decided to support both a GUI
and a CLI. I wrote the GUI in Qt6, for portability
to Linux, Windows and macOS. The CLI is handy
for regression testing and scripting, but it is strictly
optional. All important features are available with-
out it.

Like Rompar, I chose JSON as a save format.
Like Bitract, my tool shows handy histograms to
quickly choose the best bit threshold.

I decided to avoid having a strict grid of bits,
but instead to use other objects to generate bit po-
sitions. In my early drafts, this was done by drawing
row and column lines, then identifying their crossing
points as bit locations. Because only the bit loca-
tions really matter, there’s plenty of time to add
support for marking grids later.

Since this is a CAD program at heart, I took a
few lessons from the PCB layout tools that I reg-
ularly cuss at. Design Rule Checks (DRCs) were
written early, implementing such features as iden-
tifying overlapping bits, ensuring that each row is
the same length, and sanity checking the design in
other ways. Each DRC violation has a position in
the project view, appearing as a yellow box beneath
the bits but above the photograph. DRC violations
can also be used for providing other feedback; the
list isn’t necessarily restricted to errors.

. - S
m e
® DRC Rule Violations

Ambiguous bit 0,1565

-
L
e
-
-
-

’!

Settings

Sampling Display

Red

Green =

Blue -

Average

Bit Histogram

63.8 127.5 191.3

Determining a Bit’s Value

Knowing the position of a bit, how do we determine
whether it’s a one or a zero? The short answer is
that we can look at how bright or dark it is, but
there are some complications to consider.

The first is the color space. Often the bits are
distinct in one color channel but absolutely indistin-
guishable in another. And once we know the right
channel, we must select the right threshold to dis-
tinguish them.

I found that by drawing a histogram of the num-
ber of bits of a given color value, I could quickly
see a bimodal distribution in some channel between
ones and zeroes. Sliding a channel threshold auto-
matically updates all visible bits, as well as updating
a marker in the histogram to visualize where your
threshold is set.

I don’t use OpenCV or similar libraries to pre-
process my images. Rather, I've found that most
implant and contact ROMs consistently have a color
difference that can be found on a single pixel when
working with losslessly compressed images.

Diffusion ROMs are a little different, in that they
are low in the chip, and when the chip has been pro-
cessed a little too long, there’s no color difference in
the bit’s center. Rather, the bit has a dark border.
For these and other edge cases, my tool abstracts

away the measurement as a class that returns an
RGB triplet. To support this edge case, I simply
wrote classes that measured a thin horizontal or ver-
tical strip of pixels, returning the darkest point in
each color channel along that strip.

Aligning Bits Into Rows

After the user draws lines for all the rows and
columns of the ROM, we take those intersecting
points and produce a set of bits positions. Because
we don’t have a definite grid, it’s necessary to align
these bit objects into rows.

Initially T solved this problem very inefficiently,
implementing a function to find the next-to-the-
right of any bit by restricting its angle and marking
all bits I'd already passed. This worked great for
small ROMs, but it scaled horribly, and by one hun-
dred kilobits it was taking twenty minutes to align
the bits!

To come up with a faster algorithm, I realized
that sorting all of the bits by their X coordinate
would almost group them into columns. The ex-
ceptions come from the image’s tilt. Sometimes the
leftmost bits of the second column are to the left of
the rightmost bits of the first column.

We can therefore identify the leftmost bits by
following the sorted list. Whenever the Y gap is
small, say less than a few times the average gap,
we're still on the first column and we’ve identified
another row header. If the Y gap is large, we're see-
ing a bit from the second column, and we ought to
pass it by. When we start to see many large gaps,
we’ve passed the first column entirely and know all
the row header bits.

.Y .—6_
We've finally released our industry-standard data interfaces for use with the Timex-Sinclair

2000, giving you so vast an array of computer peripheral choices that even trying to make up
your mind may push you right over the edge!

CENTRONICS PARALLEL INTERFACE "“I¥"%: $69%%

The amazing Centronics Parallel Interface lets you connect your TS2000 to just about any dot|
matrix printer and most other parallel devices. You'll have the option to use the printer’s standard!
font or the TS2000 display font! What's more, we'll throw in printer driver software that supports
LPRINT and LLIST free!

RS232-C SERIAL INTERFACE “*iiif $899%

Ever about al quality printer to your TS2000? What about a modem?
With the spectacular RS232-C Serial Interface you can do both — at the same time! That's right,
we give you two channels of RS232-C power on one board! Bit transfer rate is adjustable from
300 to an incredible 19200 baud. As if that weren’t enough, you get free driver software that sup-
ports LPRINT and LLIST!

ot out of your tree with hardware

‘Send your check or money order to:
ink about the thousands of

Box 18093, Austin, TX 78760 have when we rel
.ﬁ.E\RQQ (512) 3310719 PIM for the TS2000, scheduled for April 1984,
You'll go insane!

4git clone https://github.com/JohnDMcMaster/zorrom

5git clone https://github.com/SiliconAnalysis/bitviever

So to align the bits, I first build an array of the
rightmost bits of each column that I've yet passed.
This array is seeded with the row header bits at the
far left. I then walk through the sorted list of all re-
maining bits, overwriting their nearest row element
in the array after updating the old bit’s nextto-
right pointer to aim at the new bit.

This is lightning fast, reliably arranging hun-
dreds of thousands of bits in the blink of an eye.

From Physical Bits to Logical Bytes

By this point in the article, you should understand
how you might use MaskRomTool to mark the bits
of a photograph and arrange them into a table of bit
values. You also understand how the DRC mecha-
nism might flag bits which are too near the threshold
between a one and a zero. But there’s a very im-
portant piece we haven’t yet covered: How does the
software convert this table of physically-ordered bits
into logically-ordered bytes?

Let’s begin with the prior art. John McMaster’s
Zorrom tool is built as a set of Python scripts with
libraries for CH340, LC5800, LR35902, MCS48,
PIC1670, and some TMS320 chips.* For those chips
that it doesn’t directly support, it has a solver fea-
ture that will attempt many permutations of decod-
ing until the bytes match a defined pattern, such
as setting the stack pointer in the first instruction.
John’s solver works for roughly half of targets, and
it’s far easier than manually guessing permutations.
This was the tool that I used until I recently wrote
my own decoder.

Chris Gerlinsky’s BitViewer uses the a to-
tally different strategy.” Rather than automat-
ically searching permutations, it instead graphi-
cally displays the bits with adjustable grouping into
columns. This helps a human operator explore
the layout, while overdosing on caffeine in a hyper-
focused fugue until eventually the bits make sense.
This understanding doesn’t come easily, but I and
others have done it.

I wanted the best of both these worlds. From
Zorrom, I wanted a CLI tool that could quickly pro-
cess my projects, driven by a Makefile to rerun them
in order to catch regressions in my decoder or im-
ages. I also desperately needed a good search fea-
ture, and Zorrom was the only example of such a
thing when I started. And from BitViewer, I wanted

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

59

61

63

111110111111100001111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111
111110111111100011001111000011011101110111111111
111110111111100001011100001111011101101111111111
111110110111100011110101000111001100011111111111
111110110111100000001100001111011110101111111111
111110111111100001010101000111001100101111111111
111110111111100010100100001111001110011111111111
111110111110100001010100001111001100101111111111
111110111111100011111000001001011111110011111111
111100111111010011110101110111101110010111111011
111100110111010010100111111111011010110011111110
111100111111010001001111011011110011101110010110
111100111111010011111111111111110001111101110010
111100110111010011111110111111110011111110000110
111100111111010001011111101011110011101100110010
111100111100010011111111111111100001111110010110
111100111111010010100011111101101110010001011111
101100111111010001010101110110100010000110000000
111100111111010010100111111101010010110000000011
111100111111010011111110111101111111111111101111
111100111111010011111111101001111111111111101111
111100111111010011001111011001111111111111101111
101100111111010011111111111101111101111111101111
011100110100010011111111111101101101111111101111
111100111111010000000011111100100010000000000010
111000110110001001010000110100100010000110010000
011000110110001010100011001010010010110010010101
101000110010001011111011111110111111111111111101
101000110010001011111011111110111111111111111101
011000110010001011111011111110111111111111101101
111000110010001011111011111110111111111111111101
111000110100001011101011011010111101111101111001
111000111111001000000011111100100000000000000000
111000111111001001010101110100100010001100010000
101000111111001010100111111011010010110010011111
011000111111001011111110111111111111111101111111
011000111111001011111111001111111111111111111111
101000111111001011111111111111111111111101101011
111000111111001011111111111111111101111111101101
111000110100001011111111111111111101111111111111
111000111111001000000011111100100010000000010010
010010111111000111110101110101100010000110010010
110010110111000110100111111011010010110010011111
110010111111000101011111111111111111111111111011
110010111111000111111111111111111101111111101111
110010110111000111111110111111111111111111101111
010010111111000101011111001111111111111111111111
100010111100000111111111111111111101111111111111
110010111111000110100011111111100010000000010010
110010111111000110101111000011011100100011111011
110010111111000100001100000011001100000010001110
110010110111000110100101000001000000000010010110
110010110111000100000100000011000010000010011110
110010111111000100001101000001000100000010101110
110010111111000110100100000011000010000010010010
110010111100000100001100000011000100000010101110
110010111111000110101000000011011110100001011111

address 0004 78 84 84 84 84 84 84 78 10 30 10 10 10 10 10 38

78 84 04 08 10 20 40 FC 78 84 04 18 04 04 84 78

18 28 48 88 88 FC 08 08 FC 80 80 F8 04 04 84 78
78 84 80 F8 84 84 84 78 FC 04 04 08 10 20 20 20

010
020

data

address

030

10 28 44 82 FE 82 82 82 FC 82 82 FC 82 82 82 FC
FC 82 80 80 80 80 82 FC F8 84 82 82 82 82 84 F8
FE 80 80 FC 80 80 80 FE FE 80 80 FC 80 80 80 80

78 84 84 78 84 84 84 78 78 84 84 7C 04 04 84 78
7C 82 80 80 8E 82 82 7C 82 82 82 FE 82 82 82 82

38 10 10 10 10 10 10 38 3E 08 08 08 08 88 88 70

QA0 82 84 88 FO 90 88 84 82 80 80 80 80 80 82 82 FE
0BO 82 C6 AA 92 82 82 82 82 82 C2 A2 92 92 8A 86 82
0CO 38 44 82 82 82 82 44 38 fC 82 82 fC 80 80 80 80
0D0 38 44 82 82 82 8A 44 3A FC 82 82 FC 90 88 84 82

00 10 10 10 FE 10 10 10 00 00 00 00 FE 00 00 00
00 00 10 00 00 10 00 00 00 10 92 54 38 54 92 10
00 40 20 10 08 10 20 40 00 08 10 20 40 20 10 08

150 CO CO CO CO CO CO CO CO FO FO FO FO FO FO FO FO

160
170

7C 82 40 38 04 02 82 7C FE 10 10 10 10 10 10 10

OF0 82 82 82 82 82 82 82 7C 82 82 82 82 82 44 28 10
100 92 92 92 92 AA 44 44 44 82 44 28 10 10 28 44 82

110 82 44 28 10 10 10 10 10 FE 04 08 10 10 20 40 FE

oooooo o oo

ILNONDBD w NN

COoO0DOO o e

o 4

]

v~

© O

o]

= L T)

O T T VOO0 QU g L

N O oo -~ ANIFaC 3OS

9] cum

© <

fas < =

@ o

<]

[v] 5”

—_ v

e~

@ (1]

Y T o

a vk

> ©

[.

m\ﬂ

Lo v

~N LIRS

e o2

3 P

2 K

w .

=]

O — N M T W WO~ ,—

OO O O O O O O §
NN NN NN NN

Figure 2: Extracted Bitstream and Datasheet Bytes of the

TMP47 Font ROM

is the value entered at the
character ROM address (00-2Fy)

specified by the upper 6 bits of

FC FC FC FC FC FC FC FC FF FF FF FF FF FF FF FF

00 00 00 00 00 00 00 00 00 0O 00 00 OO 00 00 0O

Figure 3. Standard character data (from address 2000)

the 9-bit program area (000-

17FH).

some graphical connection to my project file, so that
a nearly correct guess could be explored until the er-
ror was found.

My decoder is called GatoROM. It is used ei-
ther as a CLI tool without the GUI overhead of
MaskRomTool, or as a C++ library within the GUI.

Since Zorrom was the gold standard of solving
for unknown layouts, I began my decoder with the
complete set of Zorrom permutations from an ar-
bitrary bitstream, essentially exporting every case
that it would investigate. Once I could match de-
codings of all these, and also permute between all
settings, I knew that my solver had feature parity
with McMaster’s.

GatoROM uses its own class to represent a bit,
different from that in MaskRomTool. The class
holds values such as its address and bitmask during
the most recent decoding, as well as a void pointer
that might point to a matching bit in the GUI.

All of the GatoROM bits begin in a table of their
input positions, and transformations (flip, rotate,
etc) produce a table of bits in the output order. This
output table is then passed to the parser for decod-
ing, when the address and bitmask fields of the bit
class instances are updated to record their logical
positions. Zorrom does these steps in roughly the
same order, but by passing values instead of point-
ers, it does not preserve relationships between the
inputs and outputs.

I wrote earlier that I also wanted something
like BitViewer’s interactive nature in my tool. By
recording the address and mask of every bit that is
decoded, my tools can easily show their work. It’s
no trouble to select the first few bytes of a decoding,
then ask the tool to highlight the bits of those bytes
in physical order.

Specifications

+.25dB 15 Hz - 40 KHz
+ 1dB 5Hz-100 KHz

+16 dBM into 600
25 Mw into 40 £ headphones

<.01% TH.D. 8—12 hours continuous opera-
tion on internal 9 volt batteries
Equivalent input noise <-127 dBM depending on phantom load.

An Excellent Mic Pre-Amp,

High Efficiency Power

Phantom Power

the AERCO MP-2 is designed with what
we believe o be the very best compo-
nents available.

Jensen Input Transformers

have no known rival. Exotic materials
and fanatical devotion _combine for
3dB pois of 2 Hz and 250 KHz.

Extremely Low Noise

Comverter operating at 500 Kz suppiics
al the intemal power roquiremens. 1t
has been designed for minimum noisc
gencration and maintains a consersion
effciency well in excess of 90%. Input
power can range from 7 - 20 Volts DC.
without regard to polarity and with ro
elecrical connection (o the audio
circut.

High Gain... Low Gain

¥ implemented wih the indusry-
standard 52 volt circuit for proper
operation of 12 volt #nd 48 volt micro
phone types. Individual jumpers for
each channel disable the phantom
volage for use in unbalanced. environ
ments

Great Quality - Small Price

We sclected the Linear Technology
LT-1028 amplifier on the basis of sonic
clarkty and super low noise perform-

than 100 uV of D.C. offset at the out-
put, and that it consumes just 200 mW
of power are more icing on the cake.

eight independenly selected gain
senings for each channel from 20 10 50
dB. Galns are set by a switch and
network of precision resistors instead of
a pot. This ensures the lowest possible
nwise and climinates the reliabiity
problems inherent in small pots. The
switches are accessed through the RCA
acks,

We've priced the 2 channcl unit at $560
10 make you a fast fricnd. Then we
plan to sell you more neat suff

AERCO

Box 18093 Austin, TX 78760
(512) 451-5874

10

Neighborly greetings to John McMaster for his
ground breaking work on Zorrom, for helping me get
my lab back together, and for patiently explaining
all those things of semiconductor reverse engineer-
ing that I had fallen behind on in the past years.
And cheers to Vicki Pfau for being smart enough to
decode the arrangement of the TMP47 font ROM,
which will soon lead to a general decoder for TMP47
program ROMs.

My tools don’t yet solve every ROM that was
ever manufactured, but I'm happy to say that they
are now the best tools for any particular ROM ex-
traction job. They are fast, they hardly ever crash,
and they run reliably from the command line or from
an OpenGL GUI, whichever you might prefer.

Now that I've solved that problem, perhaps I can
get back to finishing my book?

RN

Controls 1-4 drives

3 inch to 8 inch drives
Shugart compatible

$199 FD-68 Interface
$99 Drive 40T/DS/DD
S 1nch/400 kilobyte

Singl double sided
AL RN $99 Dusl Drive Cabinet
40780 tracks per s1de ond S amp Pwr Pack
$3 Per Item S&H
Texas Residents add 5%

VISA/MasterCerd add SX

64K RAM & 8K ROM
on board

RGB monitor output

Enhance the performance of your TS 2068 with the AERCO Disc System. All of the
speed and convienience of a full-out floppy disc system. Load programs at an incredibly
fast 250,000 bits/sec. Fully compatible with all Shugart type drives, including those
already in use with the AERCO 1000 Disc System. The 64K of on-board RAM can be
used as a second bank of system memory or a soon to be released full-blown CP/M
System (version 2.2). The RGB output is crystal clear and rock steady. The power
supply is a S-amp high efficiency switcher. We offer a variety of other hardware for all
models of SINCLAIR-TIMEX.

Floppy Disc Interface
Disc Drives e
Power Supplies....................
Centronics Printer 1/0
Dual RS-232C Serfal 1/0............
Direct Video Mod (DV-1)
C ITOH 8510 Printer . . S
C ITDHITS00 PEIRLeE oo i snpainiamininin it
ROM Bd. with Auto Disc Boot

RGB Ceble (specify monitor)
S L 1

T mend

BEME ELECTRIC BESET L8

Box 18093 Austin TX 78760
Ph(512) 451-5874

