
22:02 A Mask ROM Bit Extraction Tool
by Travis Goodspeed

Lately I’ve been writing a book on extracting
firmware from locked microcontrollers; rather, try-
ing to write that book, because I fell into a rabbit
hole of mask ROM reverse engineering. So for a few
months, instead of writing prose, I wrote a tool in
C++ for extracting bits from ROM photographs and
a matching tool to decode those bits into logically or-
dered bytes, suitable for disassembly or emulation.1

Let’s begin with a little background: SRAM,
DRAM, Flash ROM, and EPROM memory tech-
nologies hold bits invisibly as some form of electri-
cal charge. Mask ROM is different, in that bits are
written into one of the lithography masks that pro-
duce the chip. This is very expensive per unique
program, but very cheap per chip.

Many chips include a nice, orderly grid of bits
that contain code or data. Sometimes this is en-
coded in metal vias, which you can see from the
surface of a decapsulated chip. Sometimes bits are
in the diffusion layer, and you need to remove the
upper layers of the chip with hydrofluoric acid to ex-
pose them. And sometimes bits are implanted into
the doping difference between P and N silicon, re-
quiring a procedure called a “Dash Etch” to stain a
color difference into the bits after exposing them.

Whatever the chemical procedure, the end re-
sult from the lab is a panorama photograph of the
ROM under high magnification, with bits visible to
the naked eye. Like the ones on page 6, you will
see that some bits are bright while others are dark.
These are our ones and zeroes!

If you are more patient than I, you might type
these in manually, reading the ones and zeroes off
the page in the same way that as children we typed
BASIC program listings out of magazines. Instead,
it’s nice to let a computer do that work, with a hu-
man providing a minimum amount of guidance.

Prior Work

The first of these tools to be published was Rompar
by Adam Laurie in 2013.2 It’s a GUI application
in Python, in which the operator draws a grid to
mark the bit positions. OpenCV takes care of a bit
of image preprocessing, to make the bits stand out
by tossing away unneeded color channels.

Published later in 2019, but perhaps written ear-
lier, is Chris Gerlinsky’s Bitract.3 The user first
loads an image and then describes an “area of inter-
est,” a box containing so many rows and columns of
bit positions.

These tools certainly work, but they have some
problems that frustrated me enough to write some-
thing new.

Bitract requires a commercial image processing
library to compile in Borland C++. As a Windows
program, it ignores command line parameters and
has no CLI. As a Python script, Rompar makes too
much use of command-line parameters, requiring the
row and column count of each bit grouping to be de-
fined before startup rather than worked out on the
fly.

Both Rompar and Bitract expect bits to be
perfectly ordered in a grid, which is great for re-
ducing the operator’s labor, but difficult on very
large projects, where camera or stitching distortions
might move something just barely out of the grid.
It’s also inconvenient on some 4-bit microcontrollers,
where the final group of bits sometimes has fewer
columns than the others.

1git clone https://github.com/travisgoodspeed/maskromtool
2git clone https://github.com/AdamLaurie/rompar
3git clone https://github.com/SiliconAnalysis/bitract

5



Figure 1: Font ROM from a TMP47C434N

6



Bitract uses the mouse wheel to zoom, which is
infuriating on a multitouch pad that ought to be
able to both zoom and pan. Rompar, by contrast,
traps the user at the native resolution of the image.

I write these things not to criticize their work.
These were damned handy tools for their day. I just
think that things could be more convenient.

A Fresh Start
So I began from scratch, with a design on a paper.

For starters, I decided to support both a GUI
and a CLI. I wrote the GUI in Qt6, for portability
to Linux, Windows and macOS. The CLI is handy
for regression testing and scripting, but it is strictly
optional. All important features are available with-
out it.

Like Rompar, I chose JSON as a save format.
Like Bitract, my tool shows handy histograms to
quickly choose the best bit threshold.

I decided to avoid having a strict grid of bits,
but instead to use other objects to generate bit po-
sitions. In my early drafts, this was done by drawing
row and column lines, then identifying their crossing
points as bit locations. Because only the bit loca-
tions really matter, there’s plenty of time to add
support for marking grids later.

Since this is a CAD program at heart, I took a
few lessons from the PCB layout tools that I reg-
ularly cuss at. Design Rule Checks (DRCs) were
written early, implementing such features as iden-
tifying overlapping bits, ensuring that each row is
the same length, and sanity checking the design in
other ways. Each DRC violation has a position in
the project view, appearing as a yellow box beneath
the bits but above the photograph. DRC violations
can also be used for providing other feedback; the
list isn’t necessarily restricted to errors.

Determining a Bit’s Value

Knowing the position of a bit, how do we determine
whether it’s a one or a zero? The short answer is
that we can look at how bright or dark it is, but
there are some complications to consider.

The first is the color space. Often the bits are
distinct in one color channel but absolutely indistin-
guishable in another. And once we know the right
channel, we must select the right threshold to dis-
tinguish them.

I found that by drawing a histogram of the num-
ber of bits of a given color value, I could quickly
see a bimodal distribution in some channel between
ones and zeroes. Sliding a channel threshold auto-
matically updates all visible bits, as well as updating
a marker in the histogram to visualize where your
threshold is set.

I don’t use OpenCV or similar libraries to pre-
process my images. Rather, I’ve found that most
implant and contact ROMs consistently have a color
difference that can be found on a single pixel when
working with losslessly compressed images.

Diffusion ROMs are a little different, in that they
are low in the chip, and when the chip has been pro-
cessed a little too long, there’s no color difference in
the bit’s center. Rather, the bit has a dark border.
For these and other edge cases, my tool abstracts

7



away the measurement as a class that returns an
RGB triplet. To support this edge case, I simply
wrote classes that measured a thin horizontal or ver-
tical strip of pixels, returning the darkest point in
each color channel along that strip.

Aligning Bits Into Rows

After the user draws lines for all the rows and
columns of the ROM, we take those intersecting
points and produce a set of bits positions. Because
we don’t have a definite grid, it’s necessary to align
these bit objects into rows.

Initially I solved this problem very inefficiently,
implementing a function to find the next-to-the-
right of any bit by restricting its angle and marking
all bits I’d already passed. This worked great for
small ROMs, but it scaled horribly, and by one hun-
dred kilobits it was taking twenty minutes to align
the bits!

To come up with a faster algorithm, I realized
that sorting all of the bits by their X coordinate
would almost group them into columns. The ex-
ceptions come from the image’s tilt. Sometimes the
leftmost bits of the second column are to the left of
the rightmost bits of the first column.

We can therefore identify the leftmost bits by
following the sorted list. Whenever the Y gap is
small, say less than a few times the average gap,
we’re still on the first column and we’ve identified
another row header. If the Y gap is large, we’re see-
ing a bit from the second column, and we ought to
pass it by. When we start to see many large gaps,
we’ve passed the first column entirely and know all
the row header bits.

So to align the bits, I first build an array of the
rightmost bits of each column that I’ve yet passed.
This array is seeded with the row header bits at the
far left. I then walk through the sorted list of all re-
maining bits, overwriting their nearest row element
in the array after updating the old bit’s nextto-
right pointer to aim at the new bit.

This is lightning fast, reliably arranging hun-
dreds of thousands of bits in the blink of an eye.

From Physical Bits to Logical Bytes

By this point in the article, you should understand
how you might use MaskRomTool to mark the bits
of a photograph and arrange them into a table of bit
values. You also understand how the DRC mecha-
nism might flag bits which are too near the threshold
between a one and a zero. But there’s a very im-
portant piece we haven’t yet covered: How does the
software convert this table of physically-ordered bits
into logically-ordered bytes?

Let’s begin with the prior art. John McMaster’s
Zorrom tool is built as a set of Python scripts with
libraries for CH340, LC5800, LR35902, MCS48,
PIC1670, and some TMS320 chips.4 For those chips
that it doesn’t directly support, it has a solver fea-
ture that will attempt many permutations of decod-
ing until the bytes match a defined pattern, such
as setting the stack pointer in the first instruction.
John’s solver works for roughly half of targets, and
it’s far easier than manually guessing permutations.
This was the tool that I used until I recently wrote
my own decoder.

Chris Gerlinsky’s BitViewer uses the a to-
tally different strategy.5 Rather than automat-
ically searching permutations, it instead graphi-
cally displays the bits with adjustable grouping into
columns. This helps a human operator explore
the layout, while overdosing on caffeine in a hyper-
focused fugue until eventually the bits make sense.
This understanding doesn’t come easily, but I and
others have done it.

I wanted the best of both these worlds. From
Zorrom, I wanted a CLI tool that could quickly pro-
cess my projects, driven by a Makefile to rerun them
in order to catch regressions in my decoder or im-
ages. I also desperately needed a good search fea-
ture, and Zorrom was the only example of such a
thing when I started. And from BitViewer, I wanted

4git clone https://github.com/JohnDMcMaster/zorrom
5git clone https://github.com/SiliconAnalysis/bitviewer

8



1 111110111111100001111111111111111111111111111111
111110111111100011111111111111111111111111111111

3 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

5 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

7 111110111111100011111111111111111111111111111111
111110111111100011111111111111111111111111111111

9 111110111111100011001111000011011101110111111111
111110111111100001011100001111011101101111111111

11 111110110111100011110101000111001100011111111111
111110110111100000001100001111011110101111111111

13 111110111111100001010101000111001100101111111111
111110111111100010100100001111001110011111111111

15 111110111110100001010100001111001100101111111111
111110111111100011111000001001011111110011111111

17 111100111111010011110101110111101110010111111011
111100110111010010100111111111011010110011111110

19 111100111111010001001111011011110011101110010110
111100111111010011111111111111110001111101110010

21 111100110111010011111110111111110011111110000110
111100111111010001011111101011110011101100110010

23 111100111100010011111111111111100001111110010110
111100111111010010100011111101101110010001011111

25 101100111111010001010101110110100010000110000000
111100111111010010100111111101010010110000000011

27 111100111111010011111110111101111111111111101111
111100111111010011111111101001111111111111101111

29 111100111111010011001111011001111111111111101111
101100111111010011111111111101111101111111101111

31 011100110100010011111111111101101101111111101111
111100111111010000000011111100100010000000000010

33 111000110110001001010000110100100010000110010000
011000110110001010100011001010010010110010010101

35 101000110010001011111011111110111111111111111101
101000110010001011111011111110111111111111111101

37 011000110010001011111011111110111111111111101101
111000110010001011111011111110111111111111111101

39 111000110100001011101011011010111101111101111001
111000111111001000000011111100100000000000000000

41 111000111111001001010101110100100010001100010000
101000111111001010100111111011010010110010011111

43 011000111111001011111110111111111111111101111111
011000111111001011111111001111111111111111111111

45 101000111111001011111111111111111111111101101011
111000111111001011111111111111111101111111101101

47 111000110100001011111111111111111101111111111111
111000111111001000000011111100100010000000010010

49 010010111111000111110101110101100010000110010010
110010110111000110100111111011010010110010011111

51 110010111111000101011111111111111111111111111011
110010111111000111111111111111111101111111101111

53 110010110111000111111110111111111111111111101111
010010111111000101011111001111111111111111111111

55 100010111100000111111111111111111101111111111111
110010111111000110100011111111100010000000010010

57 110010111111000110101111000011011100100011111011
110010111111000100001100000011001100000010001110

59 110010110111000110100101000001000000000010010110
110010110111000100000100000011000010000010011110

61 110010111111000100001101000001000100000010101110
110010111111000110100100000011000010000010010010

63 110010111100000100001100000011000100000010101110
110010111111000110101000000011011110100001011111

Figure 2: Extracted Bitstream and Datasheet Bytes of the TMP47 Font ROM

9



some graphical connection to my project file, so that
a nearly correct guess could be explored until the er-
ror was found.

My decoder is called GatoROM. It is used ei-
ther as a CLI tool without the GUI overhead of
MaskRomTool, or as a C++ library within the GUI.

Since Zorrom was the gold standard of solving
for unknown layouts, I began my decoder with the
complete set of Zorrom permutations from an ar-
bitrary bitstream, essentially exporting every case
that it would investigate. Once I could match de-
codings of all these, and also permute between all
settings, I knew that my solver had feature parity
with McMaster’s.

GatoROM uses its own class to represent a bit,
different from that in MaskRomTool. The class
holds values such as its address and bitmask during
the most recent decoding, as well as a void pointer
that might point to a matching bit in the GUI.

All of the GatoROM bits begin in a table of their
input positions, and transformations (flip, rotate,
etc) produce a table of bits in the output order. This
output table is then passed to the parser for decod-
ing, when the address and bitmask fields of the bit
class instances are updated to record their logical
positions. Zorrom does these steps in roughly the
same order, but by passing values instead of point-
ers, it does not preserve relationships between the
inputs and outputs.

I wrote earlier that I also wanted something
like BitViewer’s interactive nature in my tool. By
recording the address and mask of every bit that is
decoded, my tools can easily show their work. It’s
no trouble to select the first few bytes of a decoding,
then ask the tool to highlight the bits of those bytes
in physical order.

Neighborly greetings to John McMaster for his
ground breaking work on Zorrom, for helping me get
my lab back together, and for patiently explaining
all those things of semiconductor reverse engineer-
ing that I had fallen behind on in the past years.
And cheers to Vicki Pfau for being smart enough to
decode the arrangement of the TMP47 font ROM,
which will soon lead to a general decoder for TMP47
program ROMs.

My tools don’t yet solve every ROM that was
ever manufactured, but I’m happy to say that they
are now the best tools for any particular ROM ex-
traction job. They are fast, they hardly ever crash,
and they run reliably from the command line or from
an OpenGL GUI, whichever you might prefer.

Now that I’ve solved that problem, perhaps I can
get back to finishing my book?

10


