
21:10 BootNoodle: A Palindromic Bootloader for BGGP
by Harvey Phillips

Recently @netspooky announced the first annual Bi-
nary Golf Grand Prix on Twitter. The objective was
to create a binary of any sort that is the same for-
wards as it is byte-reversed, but with an emphasis on
creating as small a binary as possible, hence golfing.

This was one of those challenges where I thought
that I had no chance of creating a qualifying submis-
sion, where it might be better to just wait for the
results and admire the work of others. However, it
wasn’t long until I found myself thinking about how
it would even be possible to create such a binary.
Clearly, executables that are just pure x86 instruc-
tions (like COM files) wouldn’t count; otherwise, I
could’ve just submitted 0x90 and been done!

I decided that if I was going to attempt some-
thing like this, I’d have to first settle on a file for-
mat. In the end, I think I took the easy option
and chose to create an x86 bootloader palindrome.
The main reasons for this were that bootloaders are
essentially formatless: the only requirement for a
valid bootloader is that bytes at offset 511 and 512
are 0x55 and 0xAA respectively. The rest can be just
raw x86 instructions.

That brings us to the second reason: technically
(as far as I am aware) the absolute minimum size of
an x86 bootloader is 512 bytes. This felt like a bit of
a double-edged sword, just enough space to do some-
thing interesting, but still fairly limited. Especially
since it has to read the same backward!

Workflow

I knew that the first thing I had to get right was gen-
erating a palindromic file, whether or not anything
really executed. The bootloader itself was going to
be written in NASM, so I could then just use dd to
snip off the first 256 bytes, reverse it with a bit of
Perl from StackOverflow and cat the two halves to-
gether. I stuck all this into a shell script and started
to get to work.

Once this is complete, we can run the bootloader
with qemu-system-x86_64 bootnoodle.bin.

1 nasm −f bin −o bootnoodle . bin bootnoodle . asm
dd i f=bootnoodle . bin o f=tmp . bin \

3 bs=1 count=256
rm bootnoodle . bin

5 p e r l −0777pe ’$_=rev e r s e $_ ’ \
tmp . bin >tmp2 . bin

7 cat tmp . bin tmp2 . bin >bootnoodle . bin
rm tmp∗

x86 Bootloaders

Creating an x86 bootloader is a surprising easy task.
After fighting with a few different ideas for what to
do, I settled on printing a nice bit of “BGGP” ASCII
art and a link to my blog, where this write-up first
appeared.21

You might wonder how on Earth you might fit
a printing function into just 256 bytes. It turns
out that a huge amount of functionality, from print-
ing characters to graphics primitives, are built into
the BIOS. In our specific case, we’ll be targeting
the SeaBIOS that ships with QEMU. We call these
built-in functions by selecting the byte we place into
the AH register before invoking a particular inter-
rupt.

For example, we can call the Teletype Output
routine to print a character by placing 0x0E into AH,
the ASCII character we want to print into AL and
calling interrupt 0x10. There are couple of extra op-
tions to this function, like a page number and fore-
ground colour, that we can put in to the BX register
as well. In general, this is the flow of a bootloader;
load registers, interrupt, load registers, interrupt,
etc. We can find an exhaustive list of all these dif-

21http://xcellerator.github.io
22http://www.ctyme.com/intr/int.htm

50

ferent routines and which registers are used at the
infinitely useful x86 Interrupt Table.22

The rough flow of execution of my bootloader is
as follows:

• Clear the screen with the “scroll up window”
routine (Int 10/AH=06h).

• Set the cursor to the position we want to start
printing from with the “set cursor position”
routine (Int 10/AH=02h).

• Load the memory address of our null-
terminated string into the SI register.

• Call the string printing routine.

• Halt

The reason we have to clear the screen is that
otherwise we’d have fragments of information about
the BIOS cluttering the screen up. In QEMU’s case,
you get the SeaBIOS copyright string stuck at the
top of the screen, so for the sake of a few extra bytes,
its nicer to clear that out. Also, one of the extra op-
tions we get with “scroll up window” is that we can
change the background/foreground colour by setting
BH. I opted for 0x03, which keeps the background
black but makes the foreground cyan.

The only thing left as far as the actual program-
ming goes is the printString function. The BIOS
provides us with only a character printing function,
so we have to handle the looping logic and checking
for a null byte ourselves. This is all pretty standard
stuff if you’ve done x86 assembly programming be-
fore.

p r i n tS t r i n g :
2 pusha

. l o op :
4 lodsb

test al , al
6 jz . end

ca l l printChar
8 ca l l delay

jmp . l o op
10 .end :

popa
12 ret

First, we push all the registers onto the stack
with pusha. Entering the loop, we use lodsb which
loads a single byte from the SI register into AL, and
increments SI. We check for a NULL byte with test
al, al, and if found, jump to .end where we restore
the saved registers with popa and return. If we don’t
have a NULL byte in AL, then we call the print-
Char and delay routines. These are less interesting
and very similar to the clearScreen and setCursor
routines: set some registers, interrupt.

The last thing worth mentioning is why we have
the call to delay, which uses the “wait” routine.23
The reason is simple: introducing a 20ms delay be-
tween printing each character results in a poor man’s
animation effect!

There is still one thing that we’re forgetting.
Earlier, I mentioned that a bootloader, while be-
ing exactly 512 bytes long, must finish with bytes
0x55 0xAA. Because we’re creating a palindrome,
this means that our binary must start with 0xAA
0x55. Execution starts at offset 0, so we cannot
avoid executing these two bytes as the first instruc-
tions.

aa ; s t o s b es : d i
2 55 ; push bp

The stosb instruction is similar to lodsb; it
stores whatever is in AL in DI, ignoring segment
registers as they aren’t really relevant to this dis-
cussion. We don’t care about this because, (1) we
aren’t using DI and (2) we’re about to load AL with
the address of our string, so whatever happens to
be loaded in AL beforehand is irrelevant to us. (It’s
probably just a null byte, but that might vary from
BIOS to BIOS.)

Clearly, push bp also doesn’t matter to us. In
theory, we should clean up the stack later by poping
bp, but seeing as we’re halting into infinite loop with
the jmp $ instruction after printing our string, it re-
ally doesn’t matter either.

So, thankfully we don’t need to worry about
these two extra instructions. Merely starting the
source file with db 0xaa, 0x55 before going straight
into the _start entrypoint is enough to get us out
of trouble.

23AH=86h, CX:DX = interval in microseconds.
24https://n0.lol/bggp

51

Palindrome Time

So far, we’ve only used up 0xf5 bytes of the 0x1ff
available to us. This means that when we run our
build script, we end up with a 512-byte binary that’s
reflected about the 256-byte boundary, with a patch
of 20 NULL bytes positioned neatly in the middle.
While we technically have a palindrome, Netspooky
is way ahead of us, as can be seen by the stipulation
in the rules on the contest page.24

An easy solution would be to just have
the binary end, and append the binary
backwards at the end of the original file.
Because of this, in order to qualify for
entry, your binary must at a minimum
execute > 50% of the bytes in your bi-
nary, and must execute past the halfway
mark in your binary as well.

So far, we just about meet the 50%+ byte execu-
tion mark thanks to the 0xAA 0x55 bytes at the very
beginning. Unfortunately, we don’t yet execute past
the halfway mark, so we’ve got to do some thinking.

We’ve still got to do something a little more in-
teresting than just producing a bootloader in under
256 bytes and flipping it back on itself. There’s not
a huge amount we can do about the data part of the
binary (which makes up about 63% of all the bytes)
unless the text itself is symmetric, which it isn’t.
Besides, the rule above specifically mentions that
execution has to pass the 50% mark. That leaves us
to look at what can be done with the code.

My idea was to purposefully reverse portions of
the code in the upper half, so that they are re-
reversed in the lower half. This means that I also
need to fix the call offsets manually because NASM
won’t be able to calculate them for me.

I used Ghidra as a disassembler, but you might
want to use objdump as a slimmer alternative.25
Ghidra makes it easy to compare the NASM source
with the disassembled bytes. Because my routines
are all quite short, I just wrote in the bytes next to
the functions that I wanted to reverse. These were
chosen alternately so the execution jumps around as
much as possible, and lives up to it’s noodly name.
For example, clearScreen looks like this.

c l e a rS c r e en :
2 pusha ; 60

mov ah , 0x06 ; b4 06
4 xor al , al ; 30 c0

mov bh , 0x03 ; b7 03
6 xor cx , cx ; 31 c9

mov dx , 0 x184f ; ba 4 f 18
8 int 0x10 ; cd 10

popa ; 61
10 ret ; c3

We could have worked this out without Ghidra
and just used a hex editor, but hey, Ghidra is faster
and takes out the guesswork. We can replace this
with the raw bytes, but in reverse order:

c l e a rS c r e en db 0xc3 , 0x61 , 0x10 , 0xcd , 0x18 ,
2 0x4f , 0xba , 0xc9 , 0x31 , 0x03 ,

0xb7 , 0xc0 , 0x30 , 0x06 , 0xb4 ,
4 0x60

But we also have to take a look at the _start en-
trypoint where we call clearScreen by name. This
clearly will no longer work once we comment out
clearScreen in favour of the reversed bytes above.
You can try running the build script but NASM will
exit out with a load of errors.

The solution here is that we need to replace call
clearScreen with a raw short call. As explained
on Felix Cloutier’s x86 instruction reference, a short
(or “near”) call is a call to a memory address rela-
tive to the next instruction, where a ret is expected
to be encountered eventually.26 This means that
we can replace the line call clearScreen with a
simple db 0xe8, 0x00, 0x00. This won’t work yet
because we haven’t specified an offset, but it will let
us assemble the binary and look at some bytes.

After building, we get a binary that we can dis-
assemble again. Even after picking “x86 Real Mode”
from the list of languages in Ghidra, we’re left with-
out very much. Clicking on the first byte 0xaa and
pressing D kicks off the disassembly.

After the two bogus instructions caused by the
reversed 0x55 0xaa signature, we immediately get
two calls. These are to clearScreen and set-
Cursor which appear at the top of the source file!
In particular, note that the first call is to 0x00
0x00; this is what we need to change.

25objdump -D -b binary -mi386 -M intel,addr16 bootnoodle.bin
26https://www.felixcloutier.com/x86/call

52

In order to know which offset to set this to,
we need the address of the instruction after this
call, which is the call to setCursor at 0x5, and
the address of the re-reversed clearScreen routine.
Scrolling through the disassembly, once we cross the
half-way point, Ghidra doesn’t know what it’s look-
ing at. Keep going, and eventually, towards the end,
you’ll find another bit of disassembled code. Check-
ing it carefully, you’ll see that it matches perfectly
with the disassembly of clearScreen above! The
address of this routine is 0x1e0. Subtracting 0x5
from this gives 0x1db, the relative offset that we
need to set our hand-made call instruction to!

Going back to the source file, we change db
0xe8, 0x00, 0x00 to db 0xe8, 0xdb, 0x01. (Re-
member that x86 is little-endian!) Rebuilding gives
us a working bootloader.

I repeated this trick for the printChar routine
using the exact same steps as for clearScreen:
reverse the bytes by hand, replace any calls to
printChar with e8 00 00, fire up Ghidra to cal-
culate the correct relative memory address, and fix
the call by hand again.

For fun I reversed the data in the binary, too.
This meant that I had to fix the line in _start that
loads the address of the data into SI. This was done
by reversing the data and rebuilding. (It builds fine
because the code is unaffected; running it will just
print the string backwards.) Then, using a hex ed-

itor, I looked for the start of the re-reversed string,
and found it at 0x10a.

The instruction for moving into SI is 0xbe fol-
lowed by a memory location or register, as described
back in the x86 Instruction Reference.27 However,
there is one caveat and it involves the very first line
of the source file. Here, I’ve put org 0x7c00, which
tells NASM that we are expecting our bootloader to
be loaded to memory address 0x7c00 before being
executed.

The reason for this seemingly arcane choice
of load address is that 1024 bytes after 0x7c00
is 0x8000, which is where the kernel is normally
loaded. The usual purpose of a bootloader is to sim-
ply load the kernel from a hard disk (or other storage
device) into memory address 0x8000 and then jmp
to it. Seeing as a bootloader has to be 512 bytes in
size, it makes sense to always load it in the memory
region immediately prior to where the kernel will be
copied to.

For a nicely commented example of loading the
kernel into memory and passing execution to it,
check out my ThugBoot project.28 If you’ve been
following this article, then you shouldn’t have any
issue reading the NASM source there. For a more in-
depth read, @0xax’s incredible book Linux Insides,
which goes into infinitely more detail.29

Anyway, all this means for us is that we have
to add 0x7c00 to the address within the file of the
re-reversed string we want to print, so we end up
with a final address of 0x7d0a, and our manual mov
instruction becomes db 0xbe, 0x0a, 0x7d.

And with that, the palindromic bootloader is
done! Source code is available by github, attached
to this PDF and on page 54.30

I’d like to thank the good folks at ThugCrowd
for being so encouraging and inspirational. It was
there that I first discovered my interest in exploring
x86 bootloaders that lead to the ThugBoot project.
I’d also like to thank Netspooky in particular for
starting this competition and I highly recommend
taking part next year!

27https://www.felixcloutier.com/x86/movsx:movsxd
28https://github.com/xcellerator/thugboot
29https://0xax.gitbooks.io/linux-insides/
30git clone https://github.com/xcellerator/bootnoodle || unzip pocorgtfo21.pdf

53

; BootNoodle
2 ; A Palindromic Boot loader f o r the

; Binary Golf Grand Prix
4 ; g i thub.com/ x c e l l e r a t o r / bootnood le

6 org 0x7C00
b i t s 16

8
db 0xaa , 0x55

10
_start :

12 db 0xe8 , 0xdb , 0x1 ; c a l l c l earScreen
ca l l se tCursor

14 db 0xbe , 0x0a , 0x7d ; mov s i , msg
ca l l p r i n tS t r i n g

16 jmp $

18 ; c l earScreen :
; pusha ; 60

20 ; mov ah , 0x06 ; b4 06
; xor al , a l ; 30 c0

22 ; mov bh , 0x03 ; b7 03
; xor cx , cx ; 31 c9

24 ; mov dx , 0x184F ; ba 4 f 18
; i n t 0x10 ; cd 10

26 ; popa ; 61
; r e t ; c3

28
c l e a rS c r e en db 0xc3 , 0x61 , 0x10 , 0xcd , 0x18 ,

30 0x4f , 0xba , 0xc9 , 0x31 , 0x03 ,
0xb7 , 0xc0 , 0x30 , 0x06 , 0xb4 ,

32 0x60

34 setCursor :
pusha

36 mov ah , 0x02
mov bh , 0x00

38 mov dh , 2
mov dl , 0

40 int 0x10
popa

42 ret

44 ; printChar :
; mov ah , 0x0e ; b4 0e

46 ; mov bh , 0x0 ; b7 00
; mov b l , 0x0 ; b3 00

48 ; i n t 0x10 ; cd 10
; r e t ; c3

50
printChar db 0xc3 , 0x10 , 0xcd , 0x00 , 0xb3 ,

52 0x00 , 0xb7 , 0x0e , 0xb4

54 p r i n t S t r i n g :
pusha

56 . l o op :
lodsb

58 test al , al
jz . end

60 ; c a l l printChar
db 0xe8 , 0x8b , 0x01 ; c a l l printChar

62 ca l l delay
jmp . l o op

64 .end :
popa

66 ret

68 de lay :
pusha

70 mov ah , 0x86
mov al , 0

72 mov cx , 0
mov dx , 20

74 int 0x15
popa

76 ret

78 msg db 0x0 , ’ o i . b u h t i g . r o t a r e l l e c x ’ , 0xa ,
0xd , 0xa , 0xd , ’ /_/____\/____\/_____/ ’ ,

80 0xa , 0xd , ’ /____ / /_/ / /_/ / /_/ / ’ ,
0xa , 0xd , ’ / /_/ /__ / /__ / / __ / ’ ,

82 0xa , 0xd , ’ \ __ /____ /____ /) __ / ’ ,
0xa , 0xd , ’________________ ____ ’

84
; MBR Signature

86 t imes 510−($−$$) db 0
db 0x55

88 db 0xaa

54

