
21:05 Symgrate: A Web API for Thumb2 Symbol Recovery
by Travis Goodspeed and EVM

Hey folks!

Today we’d like to share with you our nifty lit-
tle summer project, a publicly accessible server for
recovering Thumb2 symbols. You send us the first
18 bytes of a function as a hex-encoded string, and
if that function exists in our collection of hundreds
of thousands of embedded SDK libraries, we’ll give
you back the function’s name and the library’s file-
name in easily parsed JSON. Client plugins for most
interactive disassemblers have already been written.

The first popular symbol recovery tool was IDA
Pro’s FLIRT technology, which debuted in 1996.
FLIRT matches are performed by exact equality be-
tween the first 32 bytes of a function, except for
those bytes which a linker would relocate. These
are stored in a tree structure, to take advantage of
overlaps between similar functions to minimize the
file size.

FLIRT does handle some of the stranger link-
ing choices of X86, but it does not try to solve the
general problem of false positives and collisions that
arise from related functions having identical signa-
tures despite different behavior. It won’t be putting
us reverse engineers out of business anytime soon!

In this article, we’ll be implementing a function
matcher similar to FLIRT, in that we’ll produce
blinded signatures of functions which demand that
most of the code exactly match, while forgiving dif-
ferences in the bytes that will be adjusted during
linking. We’ll implement this both as C code that
compares functions within its own address space,
and as a PostgreSQL table that can be queried to
quickly recover function names.

Thumb2 Instruction Blinding

Before we can build a database, or even compare
two functions locally, we need to learn a little bit
about the Thumb2 instruction set. We’ll do this to
create a sort of optimized disassembler, whose only
job is to blind out the bytes that don’t matter.

Thumb2 is the denser of two instruction sets in
32-bit ARM, and it’s the one that’s most commonly
found in embedded systems. Instructions are either
one or two 16-bit instruction words in length; unlike
the original Thumb and MIPS16, the 32-bit wide
instructions cannot be treated as two independent
16-bit wide instructions.

Thumb2 code uses relative addressing for
branches for reasons of efficiency, but it has the nice
side effect of making much code accidentally posi-
tion independent.

This applies to branches and function calls, but
not to explicit pointers, such as immediate values.
Those are stored in something called a constant
pool, which is a group of 32-bit constants that are
placed after the ret instruction at the end of a func-
tion and before the entry point of the next function.
These constant pools exist because Thumb2 instruc-
tions are too short to include long immediate values,
so rather than include these values inside of the in-
struction, they are referenced by a PC-relative offset
to the pool.

So a Thumb2 linker is mostly adjusting (1) rel-
ative calls between functions, and (2) absolute ad-
dresses held in literal pools at the end of a function.
Relative branches within a function aren’t adjusted,
because they remain the same wherever that func-
tion might be loaded. Our basic strategy will be to
count from the beginning of a function, enforcing
that a minimum number of instructions are either
identical or function calls. And those absolute ad-
dresses which might change in the constant pool?
Those we don’t worry about, because they come late

11

The Thumb Instruction Set

ARM DDI 0308D Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-31

3.3.6 Branches, miscellaneous control instructions

Figure 3-9 shows the encodings for branches and various control instructions.

Figure 3-9 Branches and miscellaneous control instructions

In these instructions:
A, I, F specifies which interrupt disable flags a CPS instruction must alter
I1,I2 contain bits[23:22] of the offset, exclusive ORed with the S bit
J1,J2 contain bits[19:18] of the offset
M specifies whether a CPS instruction modifies the mode (M == 1) or not (M == 0)
R specifies whether an MRS instruction accesses the SPSR (R== 1) or the CPSR (R == 0)
S contains the sign bit, duplicated to bits[31:24] of the offset, or to bits[31:20] of the offset for

conditional branches.

For further details about the No operation and hint instructions, see Table 3-36 on page 3-32.

For further details about the Special control operation instructions, see Table 3-37 on page 3-32.

For further details about Exception Return, see SUBS PC, LR on page 4-373.

!

!

"" " "

!"#"$%&'()$*%+

" # " $ " % " & " " " ! ' () * # $ % & " !" # " $ " % " & " " " ! ' () * # $ % & " !

+ , &+,"

-./01+

" " " "

!" " " "

2!" " " " 3445678&"9"&:

!"" " "

"

-./01+;,<7+;=<0>?
1+/0@6;73;ABC

B656.D6E

2 "

"

"

"

3445678&"9"&: "

"

F" F&

F" F&

"

!

!

!

"

G30E<7<30/=
H./01+ 2 3445678")9"&:

3445678""9&:

3445678""9":

3445678""9":130E ! !F" F&

!

!

"" " "

" " " "

!" " " "

!" " " "

!"" " "

"

!" " " "

" " " "

! " " "

! " " "

! " " "

! " " "

! " " "

! !

" ! !
2
-
I

B0

" ! !
2
-
I

B0

" ! !
2
-
I

2-J

" ! !
2
-
I

" ! !
2
-
I

2-J

B

B

!" !

! !

! "

" !

"

"

"

2-J

2-J

2-I

2-I

2-I

<KK(

BE

K3E6
2
-
I

4<6=ELK/5>

<K3E C MNA

-./01+?
G+/0@6;73;F/D/

C3D6;73;57/7O5
4.3K;.6@<576.

G+/0@6;P.316553.;57/76
Q<K3E?;C;RS;!!?!T

C3D6;73;.6@<576.
4.3K;57/7O5

UV16P7<30
.67O.0

!"" " " ! " " " " ! !2-J! " ! !W3;3P6./7<30?;+<075
2
-
I

2
-
I

! +<07

-./01+;,<7+;=<0> 2!" " " " 3445678&"9"&: " F" F&" 3445678""9":"

!

!" " " " ! " " " " ! !
2
-
I

2-J"! " 2-J2P61</=;1307.3=;3P6./7<305 3P7<30

!

"" " "

X6.K/0607=Y;,-./01-/.

!" " " " "" " " " ! !!" " "261O.6;C30<73.;N076..OP7 <KK8%9!: <KK8""9$: <KK8"#9"&:

JX

!

!" " " " "" " " " ! !"" " "

2/3/24/.

" " " "

Q!TQ"T Q"T Q"T

Subset of Thumb2 instruction formats from ARM DDI 0308D.
Note well that branches begin with 1111.

12

in the function, after enough instructions that we’ll
have a match or not.

The machine language format for branches are
described in Section 3.3.6 of the Thumb2 Supple-
ment Reference Manual, ARM DDI 0308D, repro-
duced here on page 12. J1 and J2 are inverted by
the sign-extension bit for reasons of backward com-
patibility, being 1 when the branch is short. From
this table, we can see that a Branch with Link (bl)
instruction always begins with F in its first word,
and will also begin with an F in its second word
except when the target is very far away.

Comparing Instructions from C

If you need to quickly compare short functions for
similarity in C, where src16() and dst16 grab 16-
bit words from your source and destination address
spaces, you might do something like the following,
counting 16-bit words which are either exactly equal
or are short branches.

// ! How s im i l a r are two func t i ons ?
2 int scorematch (int sadr , int dadr) {

int i =0;
4

// Comparing ha l f−words .
6 do{

i +=2;
8 }while (

(
10 //Halfwords e x a c t l y agree

s r c16 (sadr+i)==dst16 (dadr+i)
12

//or ha l fwords might both be a BL.
14 | | ((s r c16 (sadr+i)&0xF000)==0xF000 &&

(dst16 (dadr+i)&0xF000)==0xF000)
16)

// s top a f t e r a wh i l e .
18 && i <1024

) ;
20

return i ;
22 }

This scruffy little example is missing range
checks, and it will fail to recognize the second word
of longer branches, when J1 or J2 might be zero, but
it is brutally effective at moving symbols between
minor revisions of small firmware images.

We used this code, complete with an embarrass-
ing bug or two, in the MD380Tools project for years.
See PoC∥GTFO 10:8 and 13:5.

Comparing Instructions from SQL
Having some C code that can quickly compare

one function to another is great for porting sym-
bols from one executable to another, but we’d rather
have a giant database of functions, on a central
server, than any friend or stranger can query freely
when useful. For this, we needed to convert our rag
tag algorithm into one that was just as scruffy, but
could be expressed in terms of SQL for convenient
querying.

We decided to implement this as a string that is
wildcarded in the style of a SQL LIKE clause, ASCII-
armored and with two underscores (__) to replace
any byte which might be changed by the linker.

Our table schema is roughly like this,

drop table i f exists f un c t i on s ;
2 create table f un c t i on s (

id s e r i a l primary key ,
4 arch varchar (10) not null ,

−− C++ names can be very long .
6 name varchar (2048) not null ,

f i l ename varchar (2048) not null ,
8 raw varchar (100) not null ,

b l inded varchar (100) not null ,
10 unique (b l inded) −−saves pruning l a t e r

) ;

SQL Optimizations
When this scheme was mentioned in passing to a
mainframe old-timer by the name of Jim, he pan-
icked! “Why in hell are you traversing every table
on every query?” We’re not, of course, as that would
be much too slow.

The naïve version of this, the one that scared
Jim so much, is easily read but even after indexing
it is rather slow.

1 −− 70ms . Slow and naive , but easy to read .
select name from f un c t i on s

3 where $1 l ike bl inded ;

If we ask Postgres to explain analyze this
query, it takes nearly 70ms because every row of our
functions table must be scanned directly, and even
split into parallel threads that’s a lot of overhead.
As our database grows, the overhead will only get
worse.

We can speed things up a little more by doing
the barest minimum of parsing on the start of the
string. See how 10b50446 (0xb510 0x4604) does
not begin with an f, and is not a branch function
that might be wild-carded in our database by the

13

% cur l −X POST −d 8000 bee f =02780b78012a28bf9a42f5d16de9044540ea \
2 https : // symgrate . com/ j f n s | jq

{
4 "8000 bee f " : {

"Name" : " strcmp " ,
6 "Filename " : " i c cv9 co r t ex /GnuARM/arm−none−eab i / l i b /thumb/v7e−m+dp/hard/ l i b g . a"

}
8 }

instruction format on page 12? We can add a little
piece to the where clause, such that the first eight
characters must exactly match our unknown func-
tion. With this addition, the like operation will
only be calculated against a small subset of the to-
tal table.

1 −− 7ms when f i r s t two are not branches .
select name from f un c t i on s where

3 (substr ($1 , 3 , 1)=’ f ’
or substr ($1 , 7 , 1)=’ f ’

5 or substr ($1 , 1 , 8)=substr (bl inded , 1 , 8)
) and $1 l ike bl inded ;

300 Gigs of Object Files

The one big shortcoming of this technique is that
while it is rather robust against changes made by
the linker, it is terribly fragile to changes in com-
piler optimization.

We counter this by recognizing that much de-
vice firmware is compiled from static libraries dis-
tributed with compiler toolchains as part of an In-
tegrated Development Environment (IDE) from the
chip vendor. We’ve taken to collecting every one of
these we can publicly find online, buying the really
old ones on eBay.

All told, we’re now well above 300GB of .a, .o
and other object files, which are crunched into a
SQL table by a bunch of Binary Ninja scripts run-
ning in parallel. While Binja offers excellent script-
ing support that is a joy to use, we’re ashamed to
admit that we use it here only as a glorified ELF
parser, to quickly give us the function prefixes and
names.

All told, we have a couple hundred different IDE
versions that supply us with 41 unique fingerprints
for strcpy, 43 for strlen, 134 for strncpy and 50
for sprintf.

Clients and Server

Our server is written in Golang, presenting a few
simple API pages that return json describing every
function that matches our collection. For those in a
hurry, results can also be requested in ASCII.

There’s some overhead to the HTTPS connec-
tion, and some overhead to the searching, so we rec-
ommend sending requests in batches of a hundred
or so functions.

Let’s walk through how the IDA script works,
using a fragment in Figure 1. We’re going to iterate
over the whole program on every function that IDA
found in auto-analysis. We’ll either grab the bound-
aries of the .text section (if we’re in an ELF) with
ida_segment.get_segm_by_name or we’ll just start
at memory address 0, get the next function with
idc.get_next_func(0) (which will always be the
first function in the binary), and work forward to
the end of the binary.

The script calls ida_getfunctionprefix, a lit-
tle helper function we wrote to grab the first bytes of
the function used as the Symgrate signature, which
is currently 18 bytes. We add (address, function
bytes) pairs to our query string up to 64 times.
This allows us to query 64 signatures at a time, with

14

I t e r a t e over a l l the func t ions , query ing from the database and p r i n t i n g them .
2 fnhandled =0;

4 q s t r="" ;

6 s t a r t=0
end=0

8 t = ida_segment . get_segm_by_name(" . t ex t ")
i f (t and t . s tart_ea != ida_idaapi .BADADDR) :

10 s t a r t = t . start_ea
end = t . end_ea

12 else :
s t a r t = idc . get_next_func (0)

14 end = ida_idaapi .BADADDR

16 f=s t a r t

18 while (f != ida_idaapi .BADADDR) and (f <= end) :
iname=idc . get_func_name (f)

20 adr=f
ad r s t r="%x"%f

22 r e s=None

24 bs t r = ida_func t i onpr e f i x (f)
We query the se rve r in ba tches o f 64 func t i ons to reduce HTTP overhead .

26 q s t r+="%s=%s&"%(adrst r , b s t r)
f = idc . get_next_func (f)

28
i f fnhandled&0x3F==0 or f i s None :

30 r e s=Symgrate2 . que ry j f n s (q s t r)
q s t r=""

32 i f r e s !=None :
Symgrate2 . j p r i n t (r e s)

34 #op t i o n a l l y rename func t i ons to the va lue s found in the query
#ida_renamefunctions (res)

36
fnhandled+=1

Figure 1: Fragment of Symgrate2Query.py from the IDA Pro plugin.

15

much less network overhead than making a separate
HTTPS transaction for each function.

Once we get to 64 functions we submit the query
with Symgrate2.queryjfns. This function con-
verts marshals the query string into a JSON ob-
ject and submits the JSON object over HTTP to
the server. The server returns (address, function
name) pairs in a JSON object. By default, the
script prints the pairs, but there is also a line that
if uncommented will rename functions to the names
found by Symgrate. We find it’s usually better to
see what kind of results you get back first before
committing the names to your database.

A Database of SVDs

By this point, we hope to have already convinced
you of the value that a Web API server can have
for firmware reverse engineering. If you can use our
server to recover missing symbols from a firmware
image, why not query it for other useful things?

Among our collection of object files, we also have
nearly twenty thousand .svd files. Each .svd file
contains an XML description of a Device, the base
address of each I/O Peripheral, and the offset af-
ter that base address for each I/O Register in that
Peripheral.

Querying our server quickly gives all of the reg-
isters for the STM32F407. (There’s no support for
hexadecimal numbers before JSON5; please forgive
us if that makes your eyes bleed.)

1 % cu r l −d STM32F407=STM32F407 −X POST \
https : // symgrate . com/ jsvd | jq

3 {
"STM32F407" : [

5 {
"PeripheralName " : "TIM2" ,

7 "Name" : "CR1" ,
"Adr " : 1073741824

9 } ,
{

11 "PeripheralName " : "TIM2" ,
"Name" : "CR2" ,

13 "Adr " : 1073741828
} ,

15 {
"PeripheralName " : "TIM2" ,

17 "Name" : "SMCR" ,
"Adr " : 1073741832

19 } ,

But what you if you don’t yet know that you
are using an STM32F407? Simply send a list of the
registers and their access mode, or u for undefined,
to the server, and it’ll give you a list of potentially
compatible chips.

1 % cu r l −d 0x58000148=u −X POST \
https : // symgrate . com/ j r e g s | jq

3 [
{

5 "Name" : "STM32WBxx_CM4" ,
"Count " : 1

7 } ,
{

9 "Name" : "STM32MP1_v0r3" ,
"Count " : 1

11 } ,

– — — – — — — — – — –
We hope to have convinced you find folks that

these new-fangled Web APIs are useful, not just for
dancing babies and hamster dances, but also to ex-
pose valuable databases to otherwise slim plugins of
reverse engineering frameworks. Expect some new
database functions in the near future, and kindly
buy us a beer if the database gives you some useful
results.

16

