
21:03 Spoofing IP with IPIP
by Yannay Livneh

On the Internet, nobody knows you’re a dog. Or
so they said in 1993. IP, the most fundamental pro-
tocol of the Internet, does not enforce or verify the
validity of the source field specified in the header
of an IP packet. Anyone could just send packets
spoofing whichever origin address as they liked. It
was as easy as executing this Python code. (The /
operator in the scapy package is used to stack the
latter layer over the former.)

1 from scapy . a l l import ∗
packet = IP (s r c=’ 13 . 3 7 . 1 3 . 3 7 ’ ,

3 dst=’ 8 . 8 . 8 . 8 ’) /"some data"
send (packet)

This made a lot of people very angry and been
widely regarded as a bad move. So the elders of the
Internet, the IETF, sat together in May 2000. They
decided to drop packets they deemed fishy, and thus
BCP 38 was born.3 This fine document requires
ISPs, the moderators of the Internet, to filter pack-
ets that originate from their customers with source
IPs which were not assigned by the ISP.

Fast forward to 2020: many ISPs implemented
this policy and cloud providers followed suit. Nowa-
days, the average Internet user can’t really spoof IP
packets. However, some machines in the Internet
don’t suffer from these policies. So if a user wants
to spoof a packet, all they need to do is to ask one
of these machines nicely to send a spoofed packet
on the user’s behalf. How does one ask a friendly
machine to send a packet? Just send it over IP and
the remote machine will do the rest. To illustrate it
with Python code:
from scapy . a l l import ∗

2 packet = IP (s r c=’ 13 . 3 7 . 1 3 . 3 7 ’ ,
dst=’ 8 . 8 . 8 . 8 ’) /"some data"

4 f r i end ly_ip = ’ 1 . 2 . 3 . 4 ’
send (IP (dst=fr i end ly_ip , proto=’ i p i p ’) / packet)

And this is it: all you need to do is find such
a friendly machine and send it a spoofed packet to
send using the somewhat forgotten “IP over IP” pro-
tocol (protocol number 4). This protocol was an
early implementation for VPN. It’s dead simple, just
encapsulate another IP in an IP packet and send it.
The receiver simply decapsulates the outer packet

and sends the inner IP packet. No authentication,
no filters, and no hassles. The Internet has evolved
since those naïve days, but operating systems still
implement this protocol. And sometimes, if you are
lucky, some vendor opens it to the Internet for one
reason or another. Surprisingly, this scenario hap-
pens quite more often than you might imagine. In
fact, this is how I found it. I imagined the bug and
then tried to scan the Internet to find such a ma-
chine.

This issue has more uses than simply spoofing,
and some are worse than others (perhaps the subject
for a future article). However, I find one of the uses
rather amusing. Packet encapsulation is not limited
and can be done multiple times in a recursive man-
ner. The only limitation is the IP packet maximum
length which is 216−1. As every IP header size is at
least twenty bytes, the limit for IPIP encapsulation
is 3,276 layers. This is way more than the classic
limitation of maximal network hops (TTL) a packet
is allowed to in the IP protocol: 255. So using our
new technique, we can craft the longest Pass-The-
Parcel game in the history of the Internet. We can
craft a single packet that would bounce around for
a really long time, way more than you might have
expected. I really like this idea.

Scanning code is attached to the PDF of this fine
journal.4 As for a proof that this technique works?
Simply open pocorgtfo21.pdf in Wireshark!5

3BCP38: Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing
4unzip pocorgtfo21.pdf zmap-ipip.patch
5wireshark pocorgtfo21.pdf

7

