
20:08 Encryption is Not Integrity!
by Cornelius Diekmann

Don’t we all remember the following common
setup from our introductory security course? Bob
wants to send a secret message to Alice. In order
to obtain a key for encrypting the message, Alice
and Bob first use Diffie-Hellman (DH) to exchange
a fresh session key. With this fresh session key, Bob
symmetrically encrypts the message and sends it to
Alice. Carol volunteers to transmit the messages
between Bob and Alice. Here is the setup:

Alice Carol Bob

DH Values from Alice

DH values from Alice

compute session key

DH Values from Bob

DH Values from Bob

compute session key encrypt message
with session key

encrypted message

encrypted message

decrypt message
with session key

One of the first things we learn in our introduc-
tory security course is that Carol could Man-in-the-
Middle (MitM) the DH exchange to obtain session
keys with Alice and Bob herself, while poor Alice
and poor Bob still believe they are talking privately
with each other. The next thing an introductory
security course teaches us is how to prevent this at-
tack. And here is how this article differs from an
introductory security course: Bob has the miscon-
ception that he can use encryption to prevent unau-
thorized modification. As the title suggests, this
does not work out well for Bob. Neighbors, don’t
act like Bob.

Let us hear the story of Alice, Bob, and Carol.
Bob will make five different attempts to transmit the
encrypted message to Alice. He will try to use RSA
encryption to prevent a MitM attack. The proto-
col aborts prematurely if Carol could break the key
before Bob has sent the message.

I hear our quality-conscious readers ask “S-
tory?”, surely followed by “PoC or GTFO!” Es-

teemed reader, don’t worry, the text you are reading
right now was generated by poc.py36.

“Couldn’t Bob just use TLS?”, you might ask.
For sure! A TLS handshake would authenticate the
DH values and everything would be fine. But using a
ready-made TLS implementation would also be bor-
ing. Furthermore, the handshake sketched above is
not TLS. In the course of this story, Bob will use
parts of the OpenSSL library to do parts of the DH
handshake for him. Will this help? Let the story
begin.

Run 0: Prologue and Short recap of
Diffie-Hellman

Alice and Carol are just returning from their intro-
ductory security course. Bob, who also attended
the lecture, walks over to Alice. “If a message is
encrypted, an attacker cannot read it and thus can-
not modify it,” Bob says to Alice. Alice knows that
encryption does not provide integrity and immedi-
ately wants to call bullshit on Bob’s claim. But she
hesitates for a moment. Bob won’t appreciate an
abstract explanation anyway. “Let’s see where this
is going,” she thinks and agrees to follow his expla-
nation. “I hope there will be code?” Alice responds.
Bob nods.

“Carol, come over, Bob is explaining crypto,”
Alice shouts to Carol. Bob starts explaining, “Let’s
first create a fresh session key so I can send a secret
message to you, Alice.” Alice agrees, this sounds
like a good idea. To make the scenario realistic,
Alice makes sure that neither Bob nor Carol can
see her screen. She opens her python3 shell and
is about to generate some DH values. “We need a
large prime p and a generator g,” Alice says. “607
is a prime”, Bob says with Wikipedia open in his
browser. Alice, hoping that Bob is joking about the
size of his prime, suggests the smallest prime from
RFC 3526 as an example:

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

36unzip pocorgtfo20.pdf poc.py or git clone https://github.com/diekmann/encryption-is-not-integrity.git

62



83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

This is a 1536-bit prime. Alice notes fascinated,
“this prime has π in it!”

According to the RFC, the prime is p = 21536 −
21472 − 1 + 264 · (b21406pic + 741804). Alice contin-
ues to think aloud, “Let me reproduce this. Does
that formula actually compute the prime? Python3
integers have unlimited precision, but π is not an
integer.”

“Python also has floats,” Bob replies. Probably
Bob had not been joking when he suggested 607
as large prime previously. It seems that Bob has
no idea what ‘large’ means in cryptography. Mean-
while, using

>>> import decimal

Alice has reproduced the calculation. By the
way, the generator g for said prime is conveniently
2.

A small refresher on DH follows. Note that the
RFC uses “^” for exponentiation.
=== BEGIN SNIPPET RFC 2631 ===

2.1.1. Generation of ZZ

[...] the shared secret ZZ is generated as follows:

ZZ = g ^ (xb * xa) mod p

Note that the individual parties actually perform the

computations:

ZZ = (yb ^ xa) mod p = (ya ^ xb) mod p

where ^ denotes exponentiation

ya is party a’s public key; ya = g ^ xa mod p

yb is party b’s public key; yb = g ^ xb mod p

xa is party a’s private key

xb is party b’s private key

p is a large prime

=== END SNIPPET RFC 2631 ===

Alice takes the initiative, “Okay, I generate a se-
cret value (xa), compute ya = gxa mod p and send
to you ya, g, p. This is also how we did it in the
lecture.” Bob then has to choose a secret value (xb),
compute yb = gxb mod p and send yb back to Alice,
so she can compute ZZ a. Bob then uses the key
ZZ b he computed to encrypt a message and send it

to Alice. Since ZZ b = ZZ a, Alice can decrypt the
message.

This is what Alice and Bob plan to do:

Alice Carol Bob

xa = random()
ya = pow(g, xa, p)

xb = random()
yb = pow(g, xb, p)

(ya, g, p)

(ya, g, p)

ZZb = pow(ya, xb, p

yb

yb

ZZa = pow(yb, xa, p) ciphertext =
Enc(ZZb, message)

ciphertext

ciphertext

Dec(ZZa, ciphertext)
= message

“Let’s go then,” Bob says. “Wait,” Alice intervenes,
“DH is only secure against passive attackers. An
active attacker could MitM our exchange.” Alice
and Bob look at Carol, she smiles. Alice contin-
ues, “What did you say in the beginning?” “Right,”
Bob says, “we must encrypt our DH values, so Carol
cannot MitM us.” Fortunately, Alice and Bob have
4096-bit RSA keys and have securely distributed
their public keys beforehand.

“Okay, what should I do?” Alice asks. She knows
exactly what to do, but Bob’s stackoverflow-driven
approach to crypto may prove useful in the course
of this story. Bob types into Alice’s terminal:

>>> import Crypto.PublicKey.RSA

>>> def RSA_enc(k_pub, msg):

... return k_pub.encrypt(msg, None)[0]

He comments, “We can ignore this None and only
need the first value from the tuple. Both exist only
for compatibility.” Bob is right about that and we
now have a convenient textbook RSA encryption
function at hand.

63



Run 1: RSA-Encrypted textbook DH
in one line of python
Now Alice and Bob are ready for their DH exchange.
In contrast to their original sketch, they will encrypt
their DH values with RSA. Alice generates:

>>> xa = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> ya = pow(g, xa, p)

and sends

>>> RSA_enc(k_Bob_pub, (ya, g, p))

Alice sends 67507dee555403ad... [504 bytes
omitted]. How does Alice send the message? She
hands it over to Carol. Carol starts fiddling around
with with the data. “What are you doing?” Bob
asks. Alice replies, “It is encrypted, those were your
words. Carol will deliver the message to you.”

Carol forwards 23159f4e2daf11a6... [504 bytes
omitted]. Bob decrypts with his private RSA key,
parses ya, g, p from the message, and computes

>>> xb = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> yb = pow(g, xb, p)

>>> ZZ_b = pow(ya, xb, p)

and sends

>>> RSA_enc(k_Alice_pub, yb)

Bob sends 86dcf718bad3ee88... [504 bytes omit-
ted]. Carol forwards a different message. Alice per-
forms her part to finish the DH handshake. Carol
exclaims, “The key is 1!” Bob and Alice check. Carol
is right. How can Carol know the established keys?
Bob is right about one thing, the DH values were
encrypted, so a trivial textbook DH MitM attack
does not work since Carol cannot get the ya and
yb values. But she doesn’t need to. This is what
happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (1, g, p))

RSA decrypt
ZZb = pow(1, xb, p)

RSA(k_Alice_pub, yb)

RSA(k_Alice_pub, 1)

RSA decrypt
ZZa = pow(1, xa, p)

The prime p, the generator g, and the public keys
are public knowledge, also known to Carol (check
your textbook, neighbor). Consequently, Carol can
encrypt DH values, but she cannot read the ones
from Alice and Bob. Bob computes the shared DH
key as yaxb mod p, where Carol supplied 1 for ya.
Carol can be sure that Bob will compute a shared
key of 1, she doesn’t need to know any encrypted
values. Same goes for the exchange with Alice.

“No No,” Bob protests, “these values are not al-
lowed in DH.” Alice checks RFC 2631 and quotes:
«The following algorithm MAY be used to validate
a received public key y [...] Verify that y lies within
the interval [2,p-1]. If it does not, the key is in-
valid.» Bob replies, “So y = 1 is clearly invalid, you
must not do this Carol.” Alice objects, “The check
is optional, see this all-caps MAY there?” But Bob
feels certain that he is right and insists, “Any library
would reject this key!”

Run 2: RSA-Encrypted textbook DH
using parts of the OpenSSL library

“Sure, we’ll give it a try.” Alice responds. She sticks
to her old code because the RFC clearly states the
check optional, but Bob can reject the weak values.

Alice sends 9bbc45d463d85250... [504 bytes
omitted]. Carol, testing the same trick again,
forwards 23159f4e2daf11a6... [504 bytes omitted].
Bob now uses pyca/cryptography with the openssl
backend to do the DH computation. Maybe just do-
ing ZZ_b = pow(ya, xb, p) was too simple? Let’s
see what happens when we use some part of the
OpenSSL library (wrapped by pyca/cryptography)
to perform the same computation. A word of clar-
ification: The OpenSSL library is only used to im-
plement the DH part on Bob’s side, the exchange
is not tunneled over TLS. The RSA-part remains
unchanged.

>>> from cryptography.hazmat.primitives.asymmetric import dh

>>> from cryptography.hazmat.backends import openssl

>>> pn = dh.DHParameterNumbers(p, g)

>>> parameters = pn.parameters(openssl.backend)

>>> xb = parameters.generate_private_key()

>>> # feed ya to the openssl library backend

>>> alice_public_key = dh.DHPublicNumbers(ya, pn).public_key(openssl.backend)

>>> assert alice_public_key.key_size == 1536 # 1536-bit MODP

group of our prime

>>> yb = xb.public_key().public_numbers().y

>>> ZZ_b = xb.exchange(alice_public_key)

64



And indeed, the last line aborts with the ex-
ception ‘ValueError: Public key value is invalid for
this exchange.’ Alice and Bob abort the handshake.
This is what happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (1, g, p))

RSA decrypt
with (ya = 1, g, p)

using openssl.backend to
compute ZZb . . .

raise ValueError

“Now you must behave, Carol. We will no longer
accept your MitMed values. Now that we prohibit
the two bad DH values and everything is encrypted,
we are 100

Run 3: RSA-Encrypted textbook DH
using parts of the OpenSSL library and
custom Primes

Alice and Bob try the handshake again. Carol can-
not send ya = 1 because Bob will detect it and abort
the handshake. Alice sends 09a4b88232b16136...
[504 bytes omitted]. But Carol knows the math. She
chooses a specially-crafted ‘prime’ pc and computes
a random, valid yc value.

>>> pc = pow(2, 1536) - 1

>>> xc = int.from_bytes(os.urandom(192), byteorder=’big’)

>>> yc = pow(g, xc, pc)

Well, pc isn’t actually a prime. Let’s see if
OpenSSL accepts it as prime. Reliably testing
for primality is expensive,37 chances are good that
the prime gets waved through. Carol forwards
2f5bed0189fac5f0... [504 bytes omitted]. After
RSA decryption, Bob’s code with the OpenSSL
backend happily accepts all values. Bob sends
a790fd65fb6c163e... [504 bytes omitted]. Alice still
thinks that the RFC 3526 prime is used. Carol just
forwards random plausible values to Alice, but she
won’t be able to MitM this key. Carol forwards
a7cd7cf2c5065833... [504 bytes omitted]. The DH
key exchange is completed successfully. Now Bob
can use the key ZZ b established with DH to send an
encrypted message to Alice.

>>> iv = os.urandom(16)

>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit

>>> ct = aes128_ctr(iv, aeskey, b’Hey Alice! See, this is

perfectly secure now.’)

>>> wire = ",".format(hexlify(iv).decode(’ascii’), hexlify(ct)

.decode(’ascii’))

Bob sends the IV and the ciphertext message 1f
f0 07 7f f9 9a a1 19 9b bc cc c3 3d db b5 52 28 84 4f
f8 8d d0 03 38 8d d6 68 81 17 73 39, ed dc cd dd d5
5f f0 0e ed d0 03 3b b8 89 9b bb b6 6a a8 8e ec c7
78 8a a0 0b b7 79 9d d3 33 32 22 27 7e ed de e9 9e
ed de e6 67 7d d1 12 29 94 44 49 96 6f f5 58 8d df
fe e4 4c c6 62 2c cd dd d5 52 24 4d d7 79 91 17 7e
e5 5e e8 89 9e e3 32 2f f6 6e e6 6e e6 62 26 65. In
summary, this is what happened so far:

Alice Carol Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (yc, g, pc))

RSA decrypt
using openssl.backend

ZZb = pow(yc, xb, pc)

RSA(k_Alice_pub, yb)

RSA(k_Alice_pub, garbage)

RSA decrypt
ZZa = garbage2

ciphertext =

Enc(ZZb, message)

ciphertext

Carol chose a great “prime” pc = 21536−1 and knows
the key is broken: Only one bit is set! She can just
brute force all possible keys, the one that decrypts
the ciphertext to printable ASCII text is most likely
the correct key.

>>> iv, ct = map(unhexlify, wire.split(’,’))

>>> for i in range(1536):

... keyguess = pow(2, i)

... msg = aes128_ctr(iv, kdf128(keyguess.to_bytes(192,

byteorder=’big’)), ct)

... try:

... if not all(c in string.printable for c in

msg.decode(’ascii’)):

... continue

... except UnicodeDecodeError: #not ASCII

... continue

... break

37Common primality tests are probabilistic and relatively fast, but can err. Deterministic primality tests in polynomial time
exist. Note that DH does not need an arbitrary prime and some g, but the generator should generate a not-too-smallTM

subgroup.

65



The brute-forced key is 79,792,922,228,281,816,162,

625,251,514,142,426,264,643,433,337,375,759,593,935,354,543,

439,395,950,503,033,336, or in hex \x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00 (exactly one bit set). Carol is
correct. She immediately shouts out the message
“Hey Alice! See, this is perfectly secure now.” Bob is
depressed. “Why doesn’t my code work?”, he asks.
“Probably DH is not strong enough and we need
to use elliptic curve DH?”, he conjectures. “Maybe
Carol even has a quantum computer hidden in her
pocket, let me find a post-quantum replacement for
Diffie-Hellman, ...” he continues. Carol interferes,
“The same ideas of my attack also apply to ECDH
or a post-quantum drop-in replacement with the
same properties. Don’t waste your time on this line
of thought. If you cannot use textbook DH, ECDH
(or the post-quantum candidates) won’t help.”

Run 4: Textbook DH signed with text-
book RSA

Alice tries to put Bob on the right track, “Maybe
RSA encryption does not help, but can we use RSA
differently? Remember, encryption itself does not
not provide integrity.” “Of course,” Bob replies, “we
need to sign the DH values. And signing with RSA
is just encryption with the private key.” “Don’t for-
get the padding,” Alice is trying to help, but Bob
immediately codes:

>>> import Crypto.PublicKey.RSA

>>> def RSA_sign(k_priv, msg):

... # ignore the compatibility parameters

... return k_priv.sign(msg, None)[0]

>>> def RSA_verify(k_pub, msg, signature):

... # ignore the compatibility parameters

... return k_pub.verify(msg, (signature, None))

Again, Bob is right about ignoring the compat-
ibility parameters. However, Carol smiles as Bob
completely ignored Alice’s comment about padding.

“Let’s hardcode the prime p and generator g
for simplicity and switch back to the trivial non-
OpenSSL implementation.” Alice suggests and ev-
erybody agrees. This simplifies the DH exchange as
now, only y and the signature of y will be exchanged.
Alice only sends the following in the first step:

>>> ",".format(ya, RSA_sign(k_Alice_priv, ya))

Alice sends 45e59717fd2ad3aa...[184 bytes of y
omitted],5ee95099ea63afc6...[504 bytes of signature
omitted]. Carol just forwards 1,1. Bob parses the
values, verifies the signature correctly and performs
his step of the DH exchange.

>>> ya, signature = map(int, wire.split(’,’))

>>> if not RSA_verify(k_Alice_pub, ya, signature):

>>> print("Signature verification failed")

>>> return ’reject’

[...]

>>> return ",".format(yb, RSA_sign(k_Bob_priv, yb))

Bob sends f543932fd7646f7e...[184 bytes of y
omitted],8a3c8e3aac04e59d...[504 bytes of signature
omitted]. Carol just forwards 1,1. Alice smiles as
she receives the values. Nevertheless, she performs
the signature verification professionally. Both the
signature check at Bob and the signature check at
Alice were successful and Alice and Bob agreed on
a shared key. This is what happened so far, where
RSA corresponds to RSA_sign as defined above:

Alice Carol Bob

ya, RSA(k_Alice_priv, ya)

1, 1

RSA_verify(k_Alice_pub, 1, 1)
ZZb = pow(1, xb, p)

yb, RSA(k_Bob_priv, yb)

1, 1

RSA_verify(k_Bob_pub, 1, 1)
ZZa = pow(1, xa, p)

Carol exclaims “The key is 1!” Bob is all lost, “How
could this happen again? I checked the signature!”
“Indeed,” Carol explains, “but you should have lis-
tened to Alice’s remark about the padding. RSA
signatures are not just the textbook RSA opera-
tion with the private key. Plain textbook RSA is

66



just msgd mod N , where d is private. Guess how I
could forge a valid RSA private key operation with-
out knowledge of d if I may choose msg freely?” Bob
looks desperate. “Can Carol break RSA? What is
the magic math behind her attack?”, he wonders.
Carol helps, “1d mod N = 1, for any d. Of course I
did not break RSA. The way you tried to use RSA
as a signature scheme is just not existentially un-
forgeable. Paddings, or signature schemes, exist for
a reason.” By the way, the RSA encryption without
padding used in the previous runs is also danger-
ous.38

Run 5: Textbook DH signed with
RSASSA-PSS
Bob replaces the sign and verify functions:

>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.asymmetric import

padding

>>> def RSA_sign(k_priv, msg):

>>> return k_priv.sign(

... msg,

... padding.PSS(

... mgf=padding.MGF1(hashes.SHA256()),

... salt_length=padding.PSS.MAX_LENGTH

... ),

... hashes.SHA256()

... )

The RSA_verify function is replaced accord-
ingly.

Now Alice and Bob can try their handshake
again. Alice sends 9403c79416ebcedb...[184 bytes
of y omitted],2043516ccf286cb4...[504 bytes of signa-
ture omitted]. Carol forwards the message unmod-
ified. Bob looks at Carol suspiciously. “I cannot
modify this without breaking the signature,” Carol
replies. “Probably the DH prime is a bit too small
for the future; Logjam predicts 1024-bit breakage.
Maybe you could use fresh DH values for each ex-
change or switch to ECDH to be ready for the future,
... But I’m out of ideas for attack I could carry out
on my slow laptop against your handshake for now.”
Carol concludes.

Bob sends c02a4deacd839b93...[184 bytes of y
omitted],642f187cf7ca041b...[504 bytes of signature

omitted]. Carol forwards the message unmodified.
Finally, Alice and Bob established a shared key and
Carol does not know it.

Alice Carol Bob

ya, RSA(k_Alice_priv, ya)

ya, RSA(k_Alice_priv, ya)

RSA_verify(k_Alice_pub, . . .)
ZZb = pow(ya, xb, p)

yb, RSA(k_Bob_priv, yb)

yb, RSA(k_Bob_priv, yb)

RSA_verify(k_Bob_pub, . . .)
ZZa = pow(yb, xa, p)

To complete the scenario, Bob uses the freshly es-
tablished key to send an encrypted message to Alice.

>>> iv = os.urandom(16)

>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit

>>> ct = aes128_ctr(iv, aeskey, b’Hey Alice! See, this is

perfectly secure now.’)

>>> wire = ",".format(hexlify(iv).decode(’ascii’), hexlify(ct)

.decode(’ascii’)

Bob sends the IV and the ciphertext message 6e
e1 1c c4 48 8a ad da ad d9 97 77 7c c8 86 6a aa a4 4e
e0 0b b3 38 86 65 5f fc c9 99 90 0e, 3a a4 48 82 2f f5
5f fb b0 0b b7 7d d8 83 36 6a a8 8c c0 02 21 1f fc c7
75 59 91 1e e6 67 77 7f f4 48 83 38 86 6e ec cd d8 8c
c3 31 1a ab bc c3 3d d5 5e e2 25 52 21 13 3e e3 34 4c
c4 4d da a5 59 94 48 89 99 96 62 29 9a a2 26 66 60
01 1c cf fc cf fc c4 4e ed d4 45 51. Carol remembers
the plaintext Bob sent in run 3. She realizes that
this run’s ciphertext has exactly the same length as
the plaintext in run 3. Carol forwards a ciphertext
which is slightly shorter: 6e e1 1c c4 48 8a ad da ad
d9 97 77 7c c8 86 6a aa a4 4e e0 0b b3 38 86 65 5f fc
c9 99 90 0e, 37 74 43 33 35 50 0d d8 88 8a ab bc c5
53 3c ca a2 28 8f f2 21 1c c6 66 63 3d d4 4a a4 43 38
8f f4 4c cb ba a6 6f f1 18 8c cc cf f0 0e ee ee e2 24
44 4f f2 2e e6 69. Alice reads out loud the message
she received and decrypted: “Encryption is not In-
tegrity.” Bob shouts, “This is not the message! How
can this happen? Did Carol break AES-CTR?” Al-
ice and Carol answer simultaneously, “AES-CTR is
secure encryption, but Encryption is not Integrity.”

38Use OAEP!

67


