
20:06 A Short History of TI Calculator Hacks
by Brandon L. Wilson

A lot of people are probably familiar with Texas
Instruments graphing calculators from school, those
overpriced devices that we were required to buy for
math class. Some people are also familiar with the
fact that these calculators are programmable, that
they can be made to do all sorts of things, such as
taking notes or playing games.

But what people outside of the calculator com-
munity might not know is that these devices are
great learning tools for getting into programming,
and even reverse engineering. A big chunk of what
we know about programming graphing calculators,
we know because we figured it out ourselves. We
wrote code not knowing what would happen, we’d
run tests, experiment with what the hardware would
do, and so on. That’s never more true than with
trying to break the security built into these things.
Why would we want to do that? Well, we’ll get into
that.

I have way too many calculators. They are what
got me started in the software development indus-
try, and because of them, I’m now circling around
the security industry.

There are one or two people who have more in
terms of numbers, but mine is the largest in that it
has at least one of every model ever mass-produced.
I have at least one of every model from all over the
world, every hardware revision, every color variant,
every ViewScreen or teacher’s edition, every EZ-
Spot yellow school version, as well as a number of
one-of-a-kind or near-one-of-a-kind prototypes and
engineering samples.

I grew up with these things, they gave me my ca-
reer and my life. I love them, and I want to make it
so they can do absolutely everything they are capa-
ble of and then some, and make sure that everyone
else can, too, because I’m not the only one. They
have jump started a lot of careers, teaching so many
of us about low level programming, embedded sys-
tems, and hardware and software hacking.

My hope is that I can share with you a little bit
of my journey with these devices, how far they’ve
come, and maybe learn a little something or be en-
tertained along the way.

First and foremost, a graphing calculator is a cal-
culator. It’s capable of doing everything a scientific
calculator can do, but it also has a large screen en-
abling the graphing of equations, tracing solutions

along a graph, drawing, and so on. They even have
a 2.5mm I/O port, or in some cases USB, so that
you can share variables and programs between cal-
culators, or connect it to a computer and share them
with anyone in the world.

They are programmable, which means you can
create programs to help you solve math or engi-
neering problems, using a BASIC-like language TI
invented called TI-BASIC. It does have some very
basic commands for programming games, such as
gathering keypress input, but TI-BASIC is just way
too slow to really utilize the hardware to its maxi-
mum potential.

So for that, we have assembly language. Now,
in one form or another, every model, with the ex-
ception of the TI-80, is capable of running arbitrary
native code. Some of these have this capability built
into them, and some of them had to be hacked first,
by the graphing calculator user community.

Z80 Models
The first models used the Zilog Z80, a classic pro-
cessor used in a number of devices. It’s a 6MHz,
or on some models, 15MHz 8-bit CPU, with 16-
bit addressing, meaning it can access a maximum
of 64KB of memory at once, and it has an 8-bit I/O
port interface, so you can interact with hardware by
outputting or inputting from one of up to 256 logi-
cal ports. They have anywhere from 32KB of RAM
all the way up to 128KB. And some of them, the
most interesting ones, have Flash memory, which
ranges anywhere from 1MB up to 4MB.

32

TI-85, ZShell and the Custom Menu

The first model capable of running native assembly
programs was the TI-85, a very old model you don’t
see these days. Rumor has it that TI employees ac-
tually had a bet as to whether we’d figure out a way
to run native assembly programs. That was a safe
bet, because the community did figure out a way,
and it was through something called ZShell.

To explain how ZShell works, we should begin
by understanding “Backups” that are transferred by
the TI-Graph Link I/O cable, which is what con-
nects these old calculators to a computer. These
backups are just dumps of the entire RAM, not just
where variables are stored, but the system’s RAM
as well.

The calculator’s operating system also supports
something called “Custom” menu entries, which you
access with the Custom button on the keyboard.
You could add your most commonly used OS com-
mands in there and be able to access them easily.

The way the OS stores things in this menu is by
just keeping track of the address of the code that
would handle this OS command. And it keeps track
of this in System RAM, which is included in the
computer backup.

All we have to do for code execution is to change
the address of one of these custom menu entries
to point to code that we also embed in the RAM
backup. That is what ZShell is, just a small pro-
gram that lets you run other programs which are
stored on the calculator in the form of String vari-
ables.

TI-82 and Code Execution through Reals

Then the TI-82 came along, and it also had to be
hacked to allow execution of native assembly code.
It has no Custom menu, so another method had to
be found. It does have memory backups, so we be-

gan by taking a look at other things that are stored
in System RAM.

The TI-OS is essentially just a series of “Con-
texts,” which are kind of like built-in applications,
things such as the home screen, the equation editor,
the graph screen, etc. Each context has a table of
addresses that point to handlers for different things,
such as what happens once you press a key. The key-
press handler is called the cxMain handler, because
it’s the main, most important handler. Whenever
you switch to a new context, these handler addresses
are stored in System RAM. Our goal is to find a way,
at runtime, to overwrite the cxMain handler.

We do this by abusing another feature of these
calculators, which is storing values to variables, such
as Real variables.19 These numbers are stored in
RAM as nine bytes, and when you copy one variable
to another, these nine bytes are just copied from the
source variable to wherever the data for the second
variable is.

So if we modify one real variable, such as X, with
the bytes we want, like the address of code we embed
in the memory backup, and then modify the loca-
tion of a second real variable, such as Y, to point
to cxMain instead of the variable data’s real loca-
tion, then we can overwrite cxMain by just storing
X to Y. Once you do that, cxMain is overwritten,
and the next time you press a key, our code is run-
ning! That gets us a shell with which to run other
programs, just like on the TI-85.

TI-83 Backdoor, TI-86 Support

Then came along the TI-83, except this model ac-
tually has a backdoor in it, put there by Texas In-
struments, which allows directly running assembly
programs stored in RAM. This backdoor is hidden
in the Send(command, which is normally used for
transferring variables from one calculator to another
via the 2.5mm I/O port. But if you put a 9 right
after the command, it won’t transfer the variable,
it’ll instead execute it as native code. The TI-83 is
the first calculator I ever had, so this was around
the time I joined the calculator community.

When TI saw there was a booming interest in
assembly programming through the TI-83 backdoor,
they added really nice assembly support to the TI-
86, which is a new-and-improved TI-85. This cal-
culator has a brand new command, Asm(, intended
for running assembly programs right from the be-

19They are Real in the mathematical sense, in that they are not Complex.

33

ginning. TI not only provided some basic documen-
tation for how they use System RAM and how User
RAM is laid out, they even included OS hooks so we
could integrate with the OS and expand its function-
ality! It was really quite nice for its time.

A Dozen Models with Flash

And then came Flash technology. These, to me,
are the most interesting models, because these are
upgradeable, in terms of OS upgrades, Flash appli-
cations (which have tighter OS integration and are
stored in Flash instead of RAM), USB ports, and se-
curity implementations to protect some of this cool
new functionality. And whenever something is de-
signed explicitly to keep you from doing something,
it’s always fun to try to break it.

First off, they made the TI-83, then they made
the TI-83 Plus, and then they made the TI-84 Plus,
so there was never actually a plain old TI-84. That
would be confusing, because that would leave you
to believe that because it doesn’t have “Plus” in the
name, it might not have Flash memory.

But of course, TI did make one model called the
“TI-84 Pocket.fr,” which is just a physically-smaller
TI-84 Plus, it’s identical in every way. What’s even
worse, they made a TI-84 Plus Pocket SE which is
just a physically-smaller TI-84 Plus Silver Edition,
except they did put “Plus” in the name.

And then there are all sorts of duplicates of the
exact same calculator, just with a different name on
it. You have the TI-82 Stats and TI-82 Stats.fr,
which are really just TI-83s, you have the TI-83
Plus.fr which could actually be referring to two dif-
ferent calculators, one is just a TI-83 Plus and the
other is a TI-84 Plus Silver Edition.

And then the TI-82 Plus, which is just a TI-83
Plus, and then the TI-83 Premium CE, which is the
same as the TI-84 Plus CE, and then the TI-84 Plus
T, T for “test,” but that’s actually a TI-84 Plus Sil-
ver Edition.

Motorola 68K Models

While the Z80 models are by far my favorite, there
are also a number of Motorola 68K models. These
began with the TI-92, which came out around the
same time the TI-85 did. It has a QWERTY key-
board, which is neat but gets it banned from most
standardized tests. If it as a keyboard, it’s a com-
puter, they say.

One thing that’s unique about this model is that
it has an expansion port on the back, which would
let you add features or even turn it into a different
model entirely. There’s the TI-92 II module and the
TI-92 E module, E for Europe, that essentially just
added more RAM and language options. And then
there’s the TI-92 Plus module, equally as rare but
way more interesting, as it turns it into a TI-92 Plus,
giving it Flash memory and upgradeability. That
model is basically the same as the TI-89, except the
TI-89 doesn’t have a QWERTY keyboard.

And then came the TI-89 Titanium, which has
some minor hardware changes and most noticeably
adds a USB port.

NSpire Models (ARM)
There’s also the TI-Nspire models, which use ARM.
I hate these calculators because they’re big and
bulky, and they were clearly designed for students
and not for engineers. But they do have swappable
keyboards, and probably the most significant one
there is the TI-84 Plus keypad, which causes it to
emulate a TI-84 Plus, making it kind of sort of useful
again. There are versions that don’t have a Com-
puter Algebra System (CAS), and versions that do.

Then came the TI-Nspire CX models, again both
CAS and non-CAS versions. These have color LCDs
and are redesigned to be a little sleeker, so they’re
alright, I guess.

Another big reason to hate these guys is that
they are completely 100 percent locked down, with
no way to execute native code at all. Unless you use
Ndless, which is, for lack of a better term, a jail-
breaking utility along the lines of ZShell. For some
reason, TI fights this really hard. They fix vulner-
abilities that Ndless uses as soon as possible, way
faster than with the other models.

The eZ80 and its Flat Memory Model
And then we have the eZ80 models, the newest mod-
els that have color LCDs. Unlike the Z80 models,
these use an eZ80 CPU with 24-bit addressing and
backward compatibility with Z80 code. The ASIC
and hardware interface is completely new, totally
redesigned with security in mind. Unlike the Z80
models which use a paging or bank-switching sys-
tem, the eZ80 models have a flat memory model,
which will be interesting later on.

The TI-83 Premium CE, hardware-wise, is iden-
tical, but has a different OS on it which includes an

34

exact math engine and is only sold in Europe. TI re-
ally wants to prevent being able to run this nicer OS
on the US TI-84 Plus CE, but as we’ll see, they’re
not going to succeed in that.

And then finally the TI-84 Plus CE-T, which is
simply the European version of the TI-84 Plus CE.

So having said all that, there are some really cool
things you can do that have nothing to do with cal-
culators, or math, or school. Since some of these
models have On-the-Go USB ports, it is possible to
connect any number of USB peripherals to it, any-
thing from Bluetooth and WiFi adapters so calcula-
tors can communicate wirelessly with each other, to
serial adapters, to keyboards and mice, even USB
flash drives, hard drives, and floppy drives, all of
which exist.

These calculators have a unique USB On-the-Go
controller, one that’s flexible enough to allow real
abuses of the protocol. Probably the best example
of that is when the PlayStation 3 jailbreak first came
out, shortly after OtherOS was taken away.

Well, long story short, it was a USB-based ex-
ploit that required connecting a Teensy or similar
device to your PS3 to enable unsigned code execu-
tion. Of course Teensy’s all over the world quickly
sold out.

So I looked into how it worked and realized that
it essentially simulated a USB hub, then virtually
attached and detached a bunch of fake devices in
order to arrange the heap for a memory corruption
exploit. In order for that to work, the USB pe-
ripheral has to be able to pretend to be other USB
devices by changing its own device address in soft-
ware, and that is something the calculators are able
to do. After I ported the exploit, people were able
to jailbreak their PS3 using a graphing calculator.

You can simulate other USB devices as well, such
as the USB portal used with RFID video games like
Skylanders, Disney Infinity, Lego Dimensions. I’ve
even booted a PC off the calculator by having it
pretend to be a USB Mass Storage device!

Why have Security in a Calculator?

Why does TI bother to secure their calculators?
Well, when Flash memory first came into the calcu-
lator world, they sold Flash applications for seven to
fifteen dollars apiece. These applications included a
pocket organizer, spreadsheet applications, a peri-
odic table and enhancements to the built-in math
capabilities. They even published games.

They provided an SDK for free, but charged a
hundred dollars for the right to release three Flash
applications in their online store. Naturally, they
wouldn’t want these applications to be pirated, so
they had to restrict how and where these applica-
tions get installed.

They also want to prevent cheating in the class-
room, by locking down the calculators further during
tests and exams.

All of this depends upon preventing tampering of
the operating system, where we could easily disable
or defeat their security mechanisms. In fact, I’m
convinced we could make a better OS than them in
terms of math capabilities and performance.

There user community, of course, wants to main-
tain control over the overpriced hardware that we
own. There are countless numbers of things we can
make these devices do which not only help the cal-
culator community.

Now that we know a little bit about who the
players are, let’s get back into the technical aspects
of how these calculators work, and how the security
is implemented in them, and how we can, have, and
will continue to defeat it.

The First Z80 Flash Vulns
At a hardware level, the Z80 models really consist of
three things: the ASIC, the Flash chip, and then all
the other hardware that the ASIC interacts with,
such as the LCD display, the USB and serial I/O
ports, and the keyboard.

Now, this is not completely accurate as the hard-
ware has changed over the decades. For example,
the RAM wasn’t always internal to the ASIC, and
neither was the CPU, but this is the most common
configuration you would likely come across today.

As I mentioned, the Z80 is a 6MHz CPU with 16-
bit addressing, so it can only access 64KB of mem-
ory at one time. They use bank switching, where
that 64KB is split up logically into four 16KB pages,
also called banks. Each of these banks can hold any
16KB region of memory you want, so if what you
want to access isn’t currently swapped into one of
the banks, you just reconfigure that bank to point
to the 16KB you want, and there it is.

As far as accessing the hardware, the Z80 has 8-
bit I/O addressing, so there’s a maximum of 256 I/O
ports it can talk to. The purpose of each I/O port
is different for each model, but the Flash models all
follow the same basic pattern, which is everything
from port 0x00 all the way up to 0xAF. These do

35

everything from ASIC configuration, LCD access,
keyboard input, USB control, everything.

Z80 Memory Banks
Bank 0 1 2 3
Base Addr 0000 4000 8000 C000
Port 06 07 (05)

ROM Any Any Any
Page ROM ROM RAM
00 Page Page Page

or
ROM Any Any
Page RAM RAM
7F Page Page

There are a few rules about how the bank switch-
ing works in the 83+ and 84+ series. As I said, it’s
split up into four banks of 16KB each, starting at
0x0000, 0x4000, 0x8000, and 0xC000.

The first bank, except for some weirdness during
cold boot, always has ROM page 0x00, which is the
start of the OS. The second bank is used to swap in
different chunks of the OS, which is way bigger than
64KB, constantly swapping in what it needs when
it needs it.

The third and fourth banks typically have RAM
pages swapped in, meaning there’s usually 32KB of
RAM accessible to the OS at any given time. Some
of that is User RAM, and some of that is the hard-
ware stack, and then the rest is system RAM that
the OS can use internally.

And as you can see, the last three banks all have
I/O ports that control what page is swapped in. If
you want to swap ROM page 0x01 into the second
bank, you write a 0x01 to I/O port 0x06. Or if you
want to swap RAM page 0x81 into the third bank,
you write 0x81 to I/O port 0x07.

By far the most important I/O port in the en-
tire ASIC is port 0x14, which controls Flash un-
locking and relocking. Whenever the Flash chip is
locked, which is almost always the case, write and
erase commands to the Flash chip are ignored. So
essentially, you cannot modify Flash until you un-
lock it. It also controls whether certain I/O port
values can be modified. We call that a “privileged”
I/O port, because Flash has to be unlocked before
you can write to it. So it doesn’t deal with just
Flash, that’s just what it’s come to be known by.

How port 0x14 works is very simple; you write a
0x01 to unlock it or a 0x00 to lock it back. What’s
not simple, though, is when code is allowed to write

to that port. A special sequence of Z80 instructions
has to be fetched and executed from a “privileged”
Flash page before writes to port 0x14 will stick. And
it’s no coincidence that the unlock sequence con-
tains instructions like IM 1 (interrupt mode 1) and
DI (disable interrupts) to explicitly prevent inter-
rupts from interfering with this process.

The privileged page ranges are mentioned there,
but as you can see, the only pages allowed to mod-
ify Flash are the OS and boot pages. So you can’t
modify the OS unless you are the OS or the Boot
Code. That leaves us out of luck for unlocking it
ourselves.

Tricks that Almost Work to Unlock Flash

To give an example with how TI uses this protec-
tion, here’s the logic behind receiving and installing
an OS upgrade. In a loop, the Boot Code will 1)
receive a chunk of OS data and where it should be
written to on the Flash chip, 2) unlock Flash using
that privileged sequence and writing 0x01 to port
0x14, and then checks for a bunch of tricks we might
use to steal control away while it’s unlocked, 3) write
the OS data to the specified area of the Flash chip,
and then finally 4) relock Flash back using the same
privileged sequence as before, writing a 0x00 to lock
it back.

Anytime the OS does something involving mod-
ifying Flash, it will unlock it, perform some simple
operation as quickly as it can, and then relock Flash.

I mentioned it checks for trickery. Specifically,

• It checks to make sure that SP, the stack
pointer, lies between 0xC000 and 0xFFF8. It
does this to make sure SP is pointed to some-
where in RAM, so that when it returns back
to the caller, it can get what it assumes would
be a valid return address from the stack.

• It checks to make sure port 0x06 contains a
privileged Flash page, because that’s where
any Flash unlocking code would be running
from.

• It checks port 0x07 to make sure it contains
RAM page 0x01, which is where System RAM
is and what the OS considers the normal sce-
nario.

• It complements the bytes at 0x8000 and
0xC000, which confirms that the third and
fourth banks contain writable RAM pages. I’ll
attempt to illustrate why it does this.

36

If only the SP were in ROM

Why would TI care if we point SP, the stack pointer,
to an area of Flash? Well, let’s play this out.

For starters, modifying Flash is complicated. It’s
not as simple as loading a register value to a memory
address. It requires a sequence of memory-mapped
commands, commands like Get Chip ID, Erase Sec-
tor, Program Byte, and so on.

If we point SP to a location that’s definitely in
ROM, such as 0x1000, which is deep in ROM page
0x00, and then jump into some code that unlocks
Flash and calls a subroutine, something interesting
happens.

The CALL instruction is going to attempt to
write the return address to the location pointed to
by SP, but because SP is pointing to ROM, a bunch
of 0x80 bytes in this example, those writes are going
to be ignored. So when it finally encounters a return
instruction, it will read the two bytes pointed to by
SP, which is 0x80 and 0x80, and it’ll jump there, to
0x8080. Not at all what the code intended to do,
but because we messed with SP, that’s exactly what
happens.

Paul Courbis’ Books,
Back in Print!

Buy them from your favorite purveyor
of fine books. Or from Amazon.

https://www.amazon.com/Paul-Courbis/e/B07Y5GSJWL

So this would be a really cool way to steal con-
trol away from the OS and Boot Code, but no, they
did think of that. So what next?

Executing Misaligned Instructions

Through experimentation, we eventually learned
that the privileged sequence of instructions only
needs to be read from the privileged page; it doesn’t
have to be executed. This requires thinking about
what actually happens on the data bus when in-
structions are being executed.

When it goes to execute the “RLC (Rotate Left
with Carry)” instruction, it first has to read the
bytes that make up that instruction. Because it uses
index register IX, that’s a four byte instruction, so it
reads DD CB 00 00 from the privileged page. Then
it has to actually execute that instruction, and to do
that, it has to read the byte at IX at offset 0. That
is the 0xED byte from the privileged page. Then it
goes to execute the “load HL into D” instruction,
which means it has to read that opcode, which is
0x56 from the privileged page. Then it actually ex-
ecutes it, which means it reads the 0xF3 byte from
the privileged page.

The Z80 equivalent of all those bytes is, coinci-
dentally, “nop; nop; im 1; di,” which is the un-
lock sequence.

The big advantage here is that this does NOT re-
quire actually executing the DI (Disable Interrupts)
instruction or the IM 1 (Interrupt Mode 1) instruc-
tion, which means we could use an interrupt to steal
away control.

So all we need to do is find the instructions on
a privileged page; unfortunately, those are nowhere
to be found. So as awesome as this would be, we
cannot use it.

Port 0x05 Swaps the Call Stack’s Bank!

Well, here comes along the TI-83 Plus Silver Edition,
which is an enhanced version of the TI-83 Plus. It
has 128KB of RAM instead of just 32KB, it has a
Flash chip twice as large, and its CPU is capable of
switching between 6MHz and 15MHz. Its ASIC got
a few upgrades as well, namely I/O port 0x05.

This I/O port actually allows controlling the
RAM page swapped into the last bank, something
that couldn’t be done on the original TI-83 Plus.
The thing is, TI didn’t update their Flash unlock
trickery checks to also validate the value of port
0x05. This can be used to our advantage.

37

The OS always expects RAM page 0x01 to be
in the third bank, and RAM page 0x00 to be in the
fourth bank. But what happens if we swap the same
RAM page into the last two banks?

Bank 0 1 2 3
Base Addr 0000 4000 8000 C000
Port 06 07 05

ROM ROM RAM RAM
Page Page Page Page
00 7C 01 01

Now things are all kinds of screwed up. Even
though SP, the stack pointer, is pointing to the last
bank, the stack is most certainly not there anymore.

In fact, we have the same page swapped into two
banks at the same time. If I were to write a value
to the first byte of the third bank, I would actually
be able to read it from the first byte of the fourth
bank! That’s definitely very interesting.

What we need is to find a section of the OS, or
Boot Code, that unlocks Flash, writes a value to
the third bank, and then attempts to relock Flash
back. As luck would have it, there’s a very con-
venient block of code that does that. There is a
particular bit, and in fact an entire byte, of the cer-
tificate region of Flash that holds whether the OS is
valid or not. If it’s valid, as it usually is, the value
will be 0x00.

What we can do is jump directly into the Boot
Code at the point that it unlocks Flash, just before
it reads this byte from the certificate. It will read it
and store it to an area of System RAM called OP1,
which is in the third bank, at address 0x8478.

Since we have just used I/O port 0x05 to swap
RAM page 0x01 into both of the last two banks,
writing a zero to 0x8478 will also write a zero to
0xC478, which is exactly 16KB ahead, in the fourth
bank.

If we craft things just right, we can set SP so
that by the time it gets to the write to 0x8478, SP
will be pointing to 0x8478. When it performs that
write, it will corrupt the return address that SP is
pointing to.

If the return address used to be 0x46E1, writing
that zero has changed it to 0x00E1. So as soon as
the code hits the return instruction, it’s not going
to return to the Boot Code. It’s going to return
to 0x00E1 instead, which is deep in the OS inter-
rupt, in ROM page 0x00. We can use an OS cursor
hook at that point to steal control away, clean up

the stack and restore the value of port 0x05, and we
have Flash still unlocked, ready for us to use!

Universal Flash Unlock Exploit

That’s great and all, but this port 0x05 trickery only
works on the TI-83 Plus Silver Edition and up. The
original TI-83 Plus has no port 0x05, so it isn’t vul-
nerable to this bug.

Even worse, we had to use an OS hook to steal
control back, we had to hard-code the value of SP
based on the call stack, and we had to hard-code a
return address that starts with 0x00, all of which
could change between OS and Boot Code versions.

What would be really nice is if we had some-
thing that worked on every hardware revision of ev-
ery model in the family, independent of the OS and
Boot Code versions. To do that, we’re going to have
to attack functionality that not only exists on all
models, but isn’t likely or even able to be changed
easily.

One such feature is the OS’ ability to receive
Flash applications from a connected computer or
another calculator. Since Flash applications are
fixed multiples of 16KB in size, even the smallest
Flash application cannot fit in RAM all at once.
That means the OS must, in a loop, receive a chunk
of Flash application data, unlock Flash, write that
chunk to an arbitrary location in Flash, and then re-
lock Flash back, over and over again until all of the
application is received and written to Flash. This
has existed in every OS version for every model since
the beginning, and they cannot take it out, so if pos-
sible, it’s the perfect thing to attack.

Before jumping into the OS code that unlocks
Flash and writes data to an arbitrary destination,
we know we have control over the destination Flash
page and address, the number of bytes to write, and
the bytes to be written, but we don’t have control
over the source address, which is in RAM. That
means bit 7 of H will always be set, and bit 1 of
iy+25h will remain reset. If we could set it, then
the code that wraps DE from 0x8000 back around to
0x4000 will not run, and this routine will write data
to an address above 0x8000, which is all RAM. So
it would effectively turn this command into a RAM-
to-RAM copier.

That’s actually a good thing, because we can
use this to overwrite the data near SP, the stack
pointer, to all the same value, such as 0x8080. When
this routine hits a return instruction, it will jump to

38

. n o l i s t
2 #include " t i 8 3p l u s . inc "

. l i s t
4 . org userMem−2

UnlockFlash :
6 ; Unlocks Flash p ro t e c t i on .

; Destroys : appBackUpScreen
8 ; pagedCount

; pagedGetPtr
10 ; a r c I n f o

; iMathPtr5
12 ; pagedBuf

; ramCode
14 in a , (6)

push a f
16 ld a , 7Bh

c a l l t rans l a t ePage
18 out (6) , a

ld hl ,5092h
20 ld e , (h l)

inc h l
22 ld d , (h l)

inc h l
24 ld a , (h l)

c a l l t rans l a t ePage
26 out (6) , a

ex de , h l
28 ld a , 0CCh

ld bc , 0FFFFh
30 cp i r

ld e , (h l)
32 inc h l

ld d , (h l)
34 push de

pop ix
36 ld hl ,9898h

ld (h l) ,0C3h
38 inc h l

ld (h l) , r e turnPoint & 11111111b
40 inc h l

ld (h l) , r e turnPoint >> 8
42 ld hl , pagedBuf

ld (h l) ,98h
44 ld de , pagedBuf+1

ld bc ,49
46 l d i r

ld (iMathPtr5) , sp
48 ld hl , (iMathPtr5)

ld de , 9A00h
50 ld bc ,50

l d i r
52 ld de , (iMathPtr5)

ld hl ,−12
54 add hl , de

ld (iMathPtr5) , h l
56 ld iy ,0056h−25h

ld a ,50
58 ld (pagedCount) , a

ld a , 8
60 ld (a r c I n f o) , a

jp (ix)
62 t rans l a t ePage :

ld b , a
64 in a , (2)

and 80h
66 j r z , _is83P

in a , (2 1 h)
68 and 3

ld a , b
70 r e t nz

and 3Fh
72 r e t

_is83P : ld a , b
74 and 1Fh

r e t
76 returnPoint :

ld iy , f l a g s
78 ld hl , (iMathPtr5)

ld de ,12
80 add hl , de

ld sp , h l
82 ex de , h l

ld hl , 9A00h
84 ld bc ,50

l d i r
86 pop a f

out (6) , a
88 r e t

. end
90 end

Universal Unlock Exploit for the TI 83+ Family

39

0x8080 instead, where we can take control, clean up
the stack, and return with Flash still unlocked.

So how can we ensure bit 1 of IY+25h is set even
when this routine will start out by resetting it?

If we point iy-25h to a point in Flash where bit
1 is set, then the Boot Code’s attempt to reset it
with the res (Reset Bit) instruction will not work.
If you remember, modifying Flash involves memory-
mapped commands to program one byte at a time,
so the set and res instructions will have no effect.
See page 39 for a working example.

Now, this is all entirely dependent on the fact
that they never set iy after Flash is unlocked, so
it’s fixed easily enough in the OS. But similar func-
tionality exists in the Boot Code, and that can’t
be easily fixed, certainly not on existing hardware.
And even if they did fix it, there are a number of
other Flash unlock exploits that can be used. I have
about a dozen different methods that I’ve never dis-
closed, just in case TI ever starts to get aggressive
with fixing these things.

RSA Key Factoring

Being able to unlock Flash and modify it ourselves
is nice, but if we wanted to write our own OS,
we’d have to rely on custom OS receivers, which
are platform-dependent, error-prone, and just trou-
blesome to mess with. It would be nice if we could
just patch the OS and re-sign it ourselves, or write
our own OS and sign it, with TI’s private RSA key.
But of course, they aren’t going to just hand that
key over to us.

Flash-upgradeable Z80 models started around
the time that the TI-73 came out, and that was
around 1997. And in 1997, 512-bit RSA keys were
looking pretty secure. If you don’t know, RSA’s
strength is in the inability to factor the public key,
which is an extremely large number, into two prime
numbers. And computing power not being what it
is today, that was considered impossible at the time.

But, flash forward ten years or so, and one person
decided to give it a shot anyway on his computer.
He used something called the General Number Field
Sieve, which, at least at the time, and maybe still so,
was considered the fastest and most efficient known
method of factoring numbers into primes. He kicked
off the process for the TI-83 Plus OS signing key and
let it run on his computer for two months or so be-
fore it finally spit out the primes. He had proven

what was long disregarded, that it was possible to
factor these keys. So he posted about it online, and
very shortly after, TI silenced him.

They actually sent someone to his home to talk
to him, to strongly encourage him not to work on
this anymore, not even to talk about it. As you can
imagine, this scared the crap out of him.

But, the damage was done, and the commu-
nity knew what was possible. They took the re-
maining thirteen public keys and started a BOINC
distributed computing project to factor the rest of
them. We had hundreds, thousands of people all
helping to factor the keys as quickly as possible, and
before we knew it, we had all thirteen private keys
in just one month, all under TI’s nose and without
them finding out.

Since no one ever had the OS keys, or even the
application keys on most models, there were no tools
to sign modified OSes or applications. I threw some
together, validated that every single key was correct
and could produce OSes and Flash applications that
each calculator would accept, and published those
tools along with the key files needed to use them.20
That seemed to be the final straw for TI, because
they sent me a DMCA takedown notice.

Were it not for the EFF, the Electronic Frontier
Foundation, stepping in and offering to defend me
legally against TI’s threats, I would’ve been forced
to comply. The EFF sent a letter to Texas Instru-
ments stating that it isn’t possible to copyright a
number, which is essentially what I published, and
that they should leave me alone because it isn’t
worth destroying a person over. TI did not respond
to that letter, so the matter was dropped, and I’m
still hosting the 512-bit keys to this day.

Knowing that they had lost this particular bat-
tle, TI started using impossible-to-factor 2048-bit
RSA keys in newly-manufactured models of the TI-
84 Plus ad TI-84 Plus Silver Edition. Since the hard-
ware was never designed to validate such a large
signature, validating the OS now takes six minutes!
This is simply unacceptable, so we’ll have to fall
back on Flash unlock exploits again to undo this.

20unzip pocorgtfo20.pdf ti83pluskeys.zip

40

Defeating the 2048-bit Signature; or,
John Hancock Corrupts the Call Stack

So to get rid of this six minute validation, we have
to understand how the calculator boots and how OS
upgrades work.

When first turning the calculator on, the Boot
Code is the first thing to get control. It does some
basic hardware initialization, then checks the OS
valid marker stored on sector 0 of the Flash chip. If
that marker is valid, it jumps into the OS, and the
calculator starts normally. If that marker is NOT
valid, then it waits to receive a new, valid OS over
one of the link ports.

For a typical OS transfer, the first thing the Boot
Code will do is invalidate the OS both in the certifi-
cate and by erasing Flash sector 0, which will reset
the OS valid marker. In a loop, it keeps receiving
small chunks of the OS over and over into RAM, and
then unlocking Flash, writing that to its destination,
and then re-locking Flash. Once that’s all done, it’s
time for the Boot Code to validate the 512-bit sig-
nature in the OS, which is effectively useless now
because we can generate that signature ourselves.
Then, it goes to validate the 2048-bit signature. And
if all those checks pass, it marks the OS as valid in
Flash sector 0 and the certificate, and then it jumps
into it.

Digging in a little further, let’s look at how it
validates this 2048-bit signature. Unlike the origi-
nal 512-bit signature, this new one is stored length-
indexed, meaning that there’s a word at the begin-
ning indicating it’s 256 bytes. If you know the signa-
ture is 2048-bit, or 256 bytes, why store the length?
It opens up the possibility that it could be exploited,
and as it turns out, yes, they don’t bounds-check this
length, so we can take advantage of it.

We can embed a really large signature into the
OS update. Because the Boot Code doesn’t check
that it’s a sane value, it will blindly copy the sig-
nature to the start of RAM, at 0x8000. So we can
store 0x80 bytes of garbage there, then a Z80 jump
instruction, which is opcode C3 followed by the ad-
dress. Then we can put lots and lots and lots of
0x80s that eventually will totally overwrite RAM
including the stack.

The next time the code tries to return, it returns
to address 0x8080, where we have a jump to where
we calculated the payload would really be at.

Once we get control, we can do some cleanup,
such as marking the OS as valid both on Flash sec-
tor 0 and in the certificate, and then just jumping

to the start of the OS.
The nice thing about this technique is that no

custom OS transfer tools are required. We just cre-
ate a specially-crafted OS upgrade file. Better still,
this exploits the read-only Boot Code, so all models
manufactured so far are vulnerable.

Patching the 84+ Boot Code
Another big discovery in the community, and an-
other nail in the coffin on the security of the TI-83
Plus and TI-84 Plus series, has to do with modifying
what should be read-only boot sectors.

One thing I noticed is that the TI-84 Plus and
TI-84 Plus Silver Edition boot sectors are almost
identical. In fact, other than the fact that the first
one has a 1MB Flash chip and the other one is 2MB,
they are identical calculators in every way, except for
one little I/O write.

When the calculator is first booting and initial-
izing hardware and I/O, it writes either a 0x00 or
a 0x01 to I/O port 0x21. Now, this is a protected
port, which means Flash has to be unlocked before
it can be written to. But, both calculators run ex-
actly the same OS, which reads the value of port
0x21, bit 0 specifically, to determine which model
it’s running on. It’s critical that it know this, for a
very important reason: the OS is actually organized
into two sections.

The Flash layout for the TI-84 Plus is on page 42.
It has 0x40 Flash pages. The first OS section is at
the very beginning of the Flash chip at sector 0, and
it runs from Flash page 0x00 to page 0x08. Near the
end of the Flash chip is the second part of the OS;
these are the privileged pages. Both the upper OS
page range and the boot page are privileged, but the
boot page is supposedly read-only.

And then in between the two OS sections is
the user archive, where Flash applications, archived
variables, and so on are stored.

The Flash layout for the TI-84 Plus Silver Edi-
tion is basically the same, except that the Silver
Edition has a Flash chip that’s twice as big. The
boot page is now 0x7F instead of 0x3F, and the up-
per OS page range is 0x7C and 0x7D, instead of 0x3C
and 0x3D.

The Boot Code initially sets the value of I/O
port 0x21, indicating which model it is, but what
would happen if we unlock Flash and modify it our-
selves? If a TI-84 Plus Silver Edition writes a 0x00
to port 0x21, then the OS would believe it’s actually
a TI-84 Plus non-Silver Edition, and vice versa.

41

TI-84+ Flash Layout (Non-Silver Edition)
Flash Pages User Archive Flash Pages Flash Page
0x00 to 0x08 Flash Apps 0x3C to 0x3D 0x3F
Lower OS Archived Vars Upper OS Boot Page

Privileged Privileged
Read Only

TI-84+ Flash Layout (Silver Edition)
Flash Pages User Archive Flash Pages Flash Page
0x00 to 0x08 Flash Apps 0x7C to 0x7D 0x7F
Lower OS Archived Vars Upper OS Boot Page

Privileged Privileged
Read Only

Now, normally this would just crash the calcu-
lator, because it would suddenly be looking at page
0x3C, for example, when what it really wanted was
0x7C. But, I had an idea that I could just copy the
upper OS pages and the boot page to the middle of
the Flash chip, from pages 0x3C to 0x3F. So, when
the OS went to look for page 0x3C, it would actually
find it, and it would continue to function normally.
That effectively cuts the user archive in half. So
that was my thought, I could force the OS to only
think half the user archive was there.

But, when I tried to put this into practice by
changing port 0x21 and copying pages 0x7C through
0x7F to 0x3C through 0x3F, the copy operation
wouldn’t work. It turns out, there’s a really good
reason for that.

When I changed the value of port 0x21, I
changed which range was read-only! By changing
the value of port 0x21, I actually changed the pro-
tection from one region to another. So all this time,
we thought the Flash chip itself was edit-locked on
the boot page, but no, it was the ASIC’s port 0x21
keeping it edit-locked. By temporarily flipping the
value of port 0x21, we can actually modify the Boot
Code!

To write to page 0x7F on an 84+SE, we just
write 0x00 to I/O port 0x21, effectively making it
temporarily not a Silver Edition. Then we perform
the Flash sector erase and write while the page is un-
privileged, then restore port 0x21’s value to 0x01,
making it an SE again.

On the 84+, we do the same thing in reverse by
writing 0x01 to port 0x21 to make it temporarily
a fake SE, then overwriting the Boot Code page at
0x3F while it is no longer protected!

This made it possible to modify the Boot Code,

and modify it we did! We made diagnostic utili-
ties and embedded them in the boot page so that
it was impossible to permanently brick it, and–most
importantly–we can simply patch out the 2048-bit
signature check.

Naturally, when they figured out we could do
this, they changed the way the calculators were man-
ufactured. They now edit-lock the boot sector on
the Flash chip, so the ASIC protection is redundant.

The 84+ Color Silver Ed Uses Our Bug!

Here’s the really fun part: Shortly after, TI came out
with their first and only calculator to have a color
LCD and the classic Z80 architecture. Not only did
it have a color LCD, but it had a 4MB Flash chip
instead of 2MB, and they called it the TI-84 Plus
C Silver Edition, C for color. That’s the only dif-
ference between it and the older models. They even
used exactly the same ASIC, even though it wasn’t
designed to work with a Flash chip beyond 2MB.

The problem is, the 4MB Flash chip has a dif-
ferent sector layout compared to the 1MB and 2MB
Flash chips used in earlier models. The supposedly
read-only boot pages at the end of the 2MB Flash
chip are now in the middle of the 4MB Flash chip,
which is part of the new calculator’s user archive. So
in other words, TI now needs to write to the pages
that the ASIC is designed to protect. So what did
TI do?

They used our workaround! They temporarily
toggle which region is protected, because they can’t
just turn it off, all they can do is misconfigure it
a different way, do their writes, and then toggle it
back.

Did they get the idea from us?

42

New Protections of the TI 84+ CE
The constant toggling of port 0x21 actually slows
the calculator down too much, so they dropped the
TI-84 Plus C Silver Edition in favor of the TI-84
Plus CE, a brand new color calculator with an eZ80
CPU.

The eZ80 sports Z80 backwards compatibility, so
it can run regular old Z80 instructions in addition to
the new eZ80 ones, which support 24-bit addressing
and a 16-bit I/O range instead of just an 8-bit one.
Since they now have 24-bit addressing, they ditched
the paging and bank switching model in favor of a
flat memory model.

TI-84+ CE Flash Regions
Start Length Name

0x000000 0x200000 Boot Priv, RO
0x200000 Varies OS Priv, Writable
Varies Varies User

They also revamped the port protection, since
there are no “privileged pages” anymore. Now, cer-
tain address ranges are considered privileged. And
certain I/O ports, mainly any where the high byte
is 0x00, are considered protected and can only be
written to from a privileged address range.

The Boot region at the start of the Flash chip
is read-only and always privileged, and then the
variable-sized OS follows it. The rest is the User
archive. Since the size of the OS can vary from ver-
sion to version, the ASIC has to be configured at
runtime to know which parts of the Flash chip to
consider privileged. That range is configured via
protected I/O ports 0x001D through 0x001F, which
can only be modified by code in the privileged re-
gion. So how do the protected I/O ports work?

Well, with any privileged I/O port write, TI
must load a constant value into a register, write
that register value to the protected I/O port, and
then immediately verify that register contains the
same constant value they just loaded. They have to
do that because otherwise, we could just jump into
the Boot Code right before the port write with our
own value. That’s tedious, but they have a bunch
of macros to do this kind of stuff for them.

The problem, though, is that the OS size is vari-
able, not constant. It’s not something they can
hard-code. So, we could set our own register value
and jump into the Boot Code right before the port
0x001D I/O write. Then, we could steal control
away through a variety of means, interrupts, what-
ever.

eZ80’s Backward Compatibility Can Bite

The eZ80 has backwards compatibility for running
code in Z80 mode. (The native eZ80 mode is called
ADL mode.) Even better, any individual instruc-
tion can run in ADL mode or in Z80 mode. In
ADL mode, you can call a subroutine that runs in
Z80 mode, and when it returns, you’re back in ADL
mode. And even better than that, in that Z80 mode
subroutine, you can have ADL instructions such as
those 16-bit port OUT and IN instructions.

It’s all very convenient, so surely the protection
on the protected I/O ports works in both ADL mode
and Z80 mode, right? No, no it doesn’t.

To effectively negate the protection, we just set
the upper bounds of the privileged range to be re-
ally high, something like 0xFE0000. On line 28 of
this example, we temporarily jump into Z80 mode
to execute a single instruction, one that writes to
the protected ports 0x001D through 0x001F, which
really should not work, and then returns back to the
eZ80 ADL mode.

OpenAllPortAccess :
2 ld a , 0FEh

ld hl ,0000h
4 WriteAccessPortAHL :

ld . s i s bc ,001Dh
6 WriteBCPortAHL :

push a f
8 ld a , l

c a l l DoProtectedWrite
10 ld a , h

inc bc
12 c a l l DoProtectedWrite

pop a f
14 inc bc

DoProtectedWrite :
16 d i

push bc
18 push h l

push de
20 ld hl , do_protected_write

ld de , RAMstart
22 ld bc , (do_protected_write_end

− do_protected_write)
24 l d i r

pop de
26 pop hl

pop bc
28 jp . s i s 0000h

do_protected_write_f in ish :
30 r e t

do_protected_write :
32 out (c) , a

jp . l i l do_protected_write_f in ish
34 do_protected_write_end :

43

Someone over there really should have caught
this. These new models are less secure than the
ones from twenty years ago, and they were trying
to improve upon that security. In my opinion, the
original unlock protection used on the TI-83 Plus
and TI-84 Plus series would have worked, so long
as they stay on top of code-related exploits. (They
didn’t, of course.)

So far as this protection goes, the I/O port pro-
tection is likely in the ASIC just like before, and
can’t be fixed through software updates.

Recalling how they used the awkward 0x21
workaround in the TI-84 Plus C Silver Edition
rather than patch the ASIC, this ASIC bug is likely
here to stay. But, just in case it’s not, there are
other ways.

An Old Exploit for the TI 82 Advanced
To bring things full circle, there is a new model in
Europe called the TI-82 Advanced, which in hard-
ware is really a TI-84 Plus non-Silver Edition with-
out the 2.5mm I/O port.

This model is very locked down compared to the
others. No more assembly program execution; no
more Flash applications transferred from a PC. The
only applications are built into the OS, and they put
an LED that blinks during tests or exams in place
of the 2.5mm I/O port.

So how might we hack this thing? Well, the ob-
vious thing is to resort to the original TI-82 hacks,
whose OS even after all these years is still pretty
similar to this one.

RAM backups, perhaps? Well, that’s normally
something that happens over the 2.5mm I/O port,
which we no longer have. But, unbeknownst to most
people, RAM backups actually do work over USB,
sort of. No link software supports it, because we
never really bothered to look, but code to handle it
is implemented in the OS.

I came up with a specially-crafted memory
backup with corrupted Real variables, as well as a
script to transfer this memory backup from a PC,
and it does work, you can get code execution on it
and even unlock Flash.

Then they made a new model, the TI-84 Plus
T, which is just the Silver Edition version of this
TI-82 Advanced, except they removed the backup
functionality from it. So that functionality may dis-
appear soon from the TI-82 Advanced as well, and
we’ll need a new way in.

Where do we go from here?

What’s next? Well, there are still plenty of exploits
to release. Ndless for the TI-Nspire is constantly
being fought by TI, so help is always appreciated
there, and just explained, we need a new method
of privileged code execution for the TI-82 Advanced
that will work on the TI-84 Plus T. That’s kind of
an old school challenge that’s still outstanding, and
I’m sure a clever reader could finish it off with a few
weekends of coding.

And then of course there’s the TI-84 Plus CE
family, where we need to stay on top of new de-
velopments, new hardware revisions, new OS ver-
sions. You never know when TI is going to make a
manufacturing change or an OS update that has a
big impact on the community. More than once I’ve
seen them release OS updates that have very serious
bugs in them that mess up programs that have been
around for decades. If we don’t let them know the
technical details of what went wrong and how to fix
it, who will?

44

