
19:11 Camelus Documentum: A PDF with Two Humps
by Gabriel ‘Drup’ Radanne

Science is in crisis. The nonsensical editorial
model is attacked,56 the validity of peer review sys-
tems is questioned, and, our topic today, the repro-
ducibility of scientific research is put in doubt. As
computer science researchers, we gain reproducibil-
ity mostly by providing an implementation of the
scientific concept that can then be executed: a Proof
of Concept, if you will. As a programming language
enthusiast, my weapon of choice is OCaml.

To make my research reproducible, I would like
to include my PoC directly into my paper, so that
reviewers and readers can read and execute my re-
search directly. To achieve this, I’m going to show
you how to embed a portable OCaml bytecode exe-
cutable directly into a PDF article.

Do virtualized camels dream of
lambda-expressions?
OCaml is the hipster of programming languages.
It’s a statically typed programming language with
support for both functional and object-oriented
paradigms that was created in 1996, long before
it was cool. Its main selling point is its sensible
and usable design, which is achieved by reaching a
compromise between the practicality of Haskell, the
safety of C and the speed of Lisp. While OCaml
is genuinely an amazing language, it also possess a
slightly unusual feature: it can be compiled to either
native executable for speed, or to bytecode, which
can be executed on a virtual machine. Bytecode is
portable,57 rather lightweight, and reasonably fast.

So, what does OCaml bytecode look like? It’s
actually a fairly simple file format: a bytecode file is
divided into sections. Just like ZIP files, the content
starts from the end. The last line of the file should
be composed of a magic number that identifies the
version of the bytecode, the number of sections, and
an index.

The index is a list of pairs composed of a four let-
ter name and a length in bytes. The order of the sec-
tions is not important. The virtual machine knows
about a fixed set of sections: CODE, DATA and PRIM
(which contains the list of the required C primitives)
are mandatory. In addition, it can contain other sec-
tions such as DLLS (required libraries), DLPT (where
to find libraries), DBUG (debug information), CRCS
(CRCs of contained modules), and SYMB (nobody
knows, it’s not documented, but it’s probably about
symbols).

+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Ignored Header |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | S e c t i on s

. |

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on N | v
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Desc r ip t i on o f Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | Index :

. | n∗64 b i t s

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on N | v
+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Nb o f Sec t s | MagicNumber |
+−−−−−−−−−−−−+−−−−−−−−−−−−−+
one 32 b i t s twelve 8 b i t s
i n t e g e r chars

Desc r ip t i on o f a Sec t i on
+−−−−−−−−−−−−+−−−−−−−−−−−+
| Name | Length |
+−−−−−−−−−−−−+−−−−−−−−−−−+
<−−−−−−−−−−> <−−−−−−−−−>
four 8 b i t s one 32 b i t s

chars i n t e g e r

56Except the PoC‖GTFO model, which is obviously perfect.
57Caveats include but are not limited to: Portability to potato-based architectures, integer sizes, and native system libraries.

60

/Title(This PDF is an OCaml bytecode)

/Author(Gabriel Radanne)
/Creator(radanne@informatik.uni-freiburg.de)
/Subject(This PDF is an OCaml bytecode. The OCaml bytecode is a
program which takes and arbitrary pdf, a bytecode, and merges
them in a file that is both a valid PDF and a valid bytecode.
This Poster contains the code of the PDF.)
/Keywords(OCaml, PDF, Bytecode, Polyglot files)

%PDF-1.4
%
1 0 obj
<<

/Producer(Pdflatex, Mutool, ocamlc and Emacs)>>
endobj

2 0 obj
<</Type/Filespec/F(bytepdf.bc)/EF<</F 23 0 R>>>>
endobj

3 0 obj
<</Length 13139/Subtype/Type1C/Filter/ASCIIHexDecode>>
stream
010004020001010106434d5231300001010131f81b01f81c02f81d038bfb8ef9c1f982051d000f42401d1ed9b0ee0e8b0c038b0c04ad1c192012f7fd11f7960ff76110000301016e7382436f707972696768742
028632920313939372c203230303920416d65726963616e204d617468656d61746963616c20536f636965747920283c687474703a2f2f7777772e616d732e6f72673e292c207769746820526573657276656420
466f6e74204e616d6520434d5231302e434d523130436f6d7075746572204d6f6465726e00000033416e6f5943704472467347747549764a77617862796364654f665067685269546b6c6d3437213a28295b0c2
c5d2d2e3031320b000022004f0050003a002400510025005300270054002800550056002a0057002b0058004200590043005a004400450046003000470031004800490033004a0035004c004d004e0015001800
02001b0009000a003c006d000d003e000e00...
endstream
endobj
...

14 0 obj
<</Length 9805>>
stream
q .1 0 0 .1 0 0 cm /R9 gs q BT 1 0 0 1 191.844 615.392 Tm 10 0 0 10 0 0 cm 0 g /R10 17.2154 Tf [(T)-.5998781(h)-.90052708(i)-.59846(s)-302.39503(P)-.199959(D)-.
5998781(F)-302.11(i)-.5998781(s)-302.39805(a)-.5998781(n)-301.90605(O)-1.8067302(C)-.5998781(a)-.601297(m)- 10068901(l)-301.61(b)25.1056(y)-.700567(t)-.09927071(e)-.
39991904(c)-.39991904(o)-26.591803(d)-.90194508(e)-.39991904]...
endstream
endobj
...

23 0 obj
<</Length 5541629/Type/EmbeddedFile>>
stream
#!ocamlrun
0a54000000df020000000000005700000001000f0010000000130000001c000000250000002e000000370000004000000049000000520000005b000000670
00000740000007d000000860000008f0000009800000063000000280000000100000000000000430000000a00000032000000210000003f00000000000000
280000000200000000000000430000000a00000032000000210000003f00000001000000280000000200000000000000430000000a0000003200000021000
0003f00000002000000280000000200000000000000430000000a00000032000000210000003f0000000300000028000000020000...

dllunix\000dllbigarray\000

caml_abs_float\000caml_acos_float\000caml_add_debug_info\000caml_add_float\000caml_alloc_dummy\000caml_alloc_dummy_float\000c
aml_alloc_dummy_function\000caml_alloc_float_array\000caml_array_append\000caml_array_blit\000caml_array_concat\000caml_array
_get\000caml_array_get_addr\000caml_array_get_float\000...

\000\000\000$u\000\000\000\000~\000=\000\000\000Out_of_memory\000\000\000)Sys_error\000\000\000'Failure\000\000\0000Invalid_a
rgument\000\000\000+End_of_file\000\000\0000Division_by_zero\000\000\000)Not_found...

¦¾\000\000\nG\000\000\001 \000\000\007B\000\000\006 \001\015ÐÐÐÐÐÐ@°@%ArrayA\000yÐ@°@'AstringA\001\012ò@AB°@,Astring_baseA\0
01\012ÒÐ@°@,Astring_charA\001\012ß@AC°@.Astring_escapeA\001\012ÝÐÐ@°@.Astring_stringA\001\012ñ@A°@+Astring_subA\001\012ä@BD°@
.Astring_unsafeA\001\012ÊÐÐÐÐ@°@"...

UnixLabels1768838436Unix1751340325Uchar1937330979Sys1920226086String1685345064Stack1952797475Set1701990951Rresult1936020006Re
sult1851871782Random1702187301Queue1769099302Printf1769099304Printexc1919242282Pervasives1717850151Pdfwrite1717850152...

CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 00000008
Caml1999X011
endstream
endobj
24 0 obj
<</Type/Encoding/BaseEncoding/WinAnsiEncoding/Differences[11/ff/fi]>>
endobj
25 0 obj
<</Type/Annot/C[0 1 0]/Rect[175.446 472.783 182.419 481.195]/Border[0 0 0]/Dest[5 0 R/XYZ 133.768 325.363 null]/Subtype/Link>>
endobj
...

36 0 obj
<</Type/Annot/Subtype/FileAttachment/FS 2 0 R/Rect[0 0 0 0]/F 2>>
endobj
37 0 obj
<</Type/FontDescriptor/FontName/ZSEZIN+CMITT10/FontBBox[0 -228 593 617]/Flags 131105/Ascent 617/CapHeight 611/Descent -228/ItalicAngle 0/StemV 88/AvgWidth 525/MaxWidth
525/MissingWidth 525/XHeight 437/CharSet(/D/a/c/d/e/f/hyphen/i/l/n/numbersign/o/t/u)/FontFile3 35 0 R>>
endobj
...

xref
0 42
0000000000 65535 f
0000000015 00000 n
0000000420 00000 n
0000000499 00000 n
0000013726 00000 n
...
0005604545 00000 n
0005604833 00000 n
0005605296 00000 n
0005605640 00000 n
0005605926 00000 n
trailer
<<
 /Size 42
 /Info 1 0 R
 /Root 7 0 R
 /ID [(l0.\214N\263\323\221\032Vd\310\023c<v) <FBC9DF422D8B8E6FE7DDBD0C0815AF47>]
>>
startxref
%%EOF
CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 XPDF0000475A
00000009
Caml1999X011

E
m

b
e

d
d

e
d

 F
ile

M
e

ta
d

a
ta

F
o

n
ts

 a
n

d
 c

o
n

te
n

t
T

a
b

le
 o

f
P

D
F

 o
b

je
c

ts

Not read by

PDF readers

C
O

D
E

D
L

L
S

P
R

IM
D

A
TA

SY
M

B
C

R
C

S

A
d

d
itio

n
a

l D
u

m
m

y sectio
n

: X
P

D
F

Regular
Index

Sectio
n

s o
f a

n
O

C
a

m
l B

yteco
d

e

Enhanced Index
with XPDF section

61

The current implementation of the virtual ma-
chine ignores the content of unknown sections, as
long as they use cryptic four-letter names. It also
ignores any data before the first section. For conve-
nience, the OCaml compiler adds a shebang at the
beginning of the file pointing to the bytecode run-
time, but it’s not required.

For the curious and the masochistic, non-official
documentation of the bytecode and its instructions—
it’s a neat stack machine—is available.58 We will
content ourselves with this basic knowledge, which
is sufficient to use and abuse bytecode files in all
sorts of fun ways.

The Safir-Albertini hypothesis states
that abusing file formats influences
your thought and decisions

PoC‖GTFO readers should be familiar with the con-
cept of PDF polyglots, from ZIP files to NES car-
tridges, including virtual machines and ELF exe-
cutables.59 Still, let me give you a quick reminder
about PDF internals and how much we can abuse
them. Any questions on the matter should be di-
rected to the Funky File Supervisor, Ange Albertini.

The Portable Document Format is a text-based
format which is also read from the end with an in-
dex of all the blocks (objects) in the file and their
offsets. Blocks can point to other blocks, and can
contain various pieces of data, such as text or ref-
erences, but also binary streams that are used for
fonts and pictures. Unlike the OCaml virtual ma-
chine, PDF readers are rather flexible when inter-
preting PDF files; indeed, they are nearly as toler-
ant of awkward dialects and outright syntax errors
as HTML4 browsers!

Concretely, this means that PDF files do not
have to begin at the beginning nor end at the end of
the file. In addition to these classical shenanigans,
Ange Albertini showed in PoC‖GTFO 4:12 that you
can create a PDF file that contains a ZIP that is
both accessible directly with unzip and also through
Acrobat Reader’s file attachment feature. This is
done by adding a binary stream that contains the
file, then adding some carefully crafted metadata
and a trailer.

58unzip pocorgtfo19.pdf caml-instructions.pdf caml-formats.pdf
59If not, what are you doing here? Go memorize the previous editions by heart! Shoo, shoo!

62

Proof of Camels

We now have all the ingredients, let’s make a PoC!
We start with a regular LaTeX file, in which we em-
bed the content using Ange’s trick:

\ immediate\ pdfobj stream at t r {/Type /EmbeddedFile}
f i l e { c l ean . byte }

\ immediate\ pdfobj{<<
/Type / F i l e sp e c /F (thing . byte) /EF <</F \ the \

pd f l a s t ob j \ space 0 R>>
>>}

\pdfannot {
/Subtype /FileAttachment /FS \ the \ pd f l a s t ob j \ space 0 R
/F 2 % Flag : Hidden

}

Our bytecode file ocaml.byte is now embedded
as an attached file that can be accessed in Acrobat
Reader. We then add a suffix that contains an in-
dex with an additional section, PDFX, that will have
the exact length from the beginning of the normal
index up to the end of the PDF. Since the bytecode
interpreter ignores unknown sections, this is a valid
OCaml bytecode file. Since the index is very small,
the file is also a valid PDF.60

Vulgaris Camelus documentum

PoCs are nice, but libraries are better! Let’s
make a tool that takes an arbitrary PDF, an ar-
bitrary OCaml bytecode program, and smashes
them together. Fortunately, OCaml already has
high-quality libraries for dealing with both formats,
namely camlpdf61 and obytelib.62 We simply need
to grab both files, decompose their structure, make
some creative interleavings, and recompose the in-
dex to have all the right indices and offsets according
to the technique revealed above. Easy peasy!63

Since the content of the binary stream containing
the bytecode must be kept intact, we must take care
to disable many traditional optimizations for stream
content, most notably compression and reencoding
for that stream. The original PDF can be of arbi-
trary shape and provenance.

Yo Dawg, I heard you liked polyglots
Having an OCaml tool to smash PDFs and byte-
codes together, we can compile that tool to byte-
code, and smash it together with a PDF describing
the tool itself!

This is in fact slightly more delicate that ex-
pected. Camlpdf relies on custom C code for en-
cryption and compression, which can’t be embedded
in normal bytecode. Instead, the OCaml compiler
adds ELF metadata in the bytecode to include the
C symbols (thus creating a polyglot!). It might be
possible to combine everything together, but we can
also simply disable these features.

But what if we want more polyglots? The ques-
tion of which formats are polyglot-compatible in the
general case is a fairly interesting one. Bytecode
and ZIP both require a trailer at the end of the file,
and are thus incompatible. However, both are com-
patible with header-based formats, such as images.
Additionally, as long as the other formats have com-
ments (or binary contents; that’s obviously the same
thing, isn’t it?), we can interleave them with OCaml
bytecode. The next step is to extend the byte-
pdf tool to make JPEG-PDF-bytecode polyglots.
We might also consider OCaml bytecode chimeras,
which contain some format in their DATA section,
but are also valid files for using this format without
duplication. As before, this should be possible with
any header-based format that uses offsets.

And now, dear readers, I hope you know what
to do for your next research paper(s)!

60git clone https://github.com/Drup/polyocamlbyte || unzip pocorgtfo19.pdf polyocamlbyte.zip
61git clone https://github.com/johnwhitington/camlpdf/ || unzip pocorgtfo19.pdf camlpdf.zip
62git clone https://github.com/bvaugon/obytelib || unzip pocorgtfo19.pdf obytelib.zip
63git clone https://github.com/Drup/bytepdf || unzip pocorgtfo19.pdf bytepdf.zip

63

