
19:10 Vector Multiplication as an IPC Primitive
by Lorenzo Benelli

Since time immemorial computer scientists have
pondered what could be the best way for two pro-
cesses to interact with each other. Is it shared mem-
ory? Is it message queues? Is it sockets? Wait no
more, dear neighbor, because in this modest arti-
cle I’m going to present a novel and more promising
way. We will see that processes can communicate
with one another by using little more than vector
instructions!

Overview of power management

Starting with the Sandy Bridge architecture, Intel’s
ISA included a new set of instructions called AVX,
to operate on larger, 256-bit sized, registers. More
recent architectures further extended this function-
ality with another set, AVX2.

As keeping these wide registers turned on all the
time wasn’t power-efficient, Skylake and later archi-
tectures kept them inactive during the normal scalar
code execution. The CPU would start powering on
these wider, vector data paths only when the first
SIMD instruction got executed.

This process takes time, and while the vector ex-
ecution units are being turned on, the vector code
gets dispatched to µops that make use of narrower
registers and, consequently, execute at roughly half
the speed. Also, after the core encounters a vector
instruction, the processor will keep the registers ac-
tive for a while (on the order of milliseconds) after
the last SIMD instruction is scheduled to run.

As the core that runs this sort of vector code
will require more power to keep the registers active,
the Package Control Unit (PCU)—an on-chip micro-
controller that manages frequencies and voltages of
the processor—will increase that core’s voltage with
a mechanism that Intel calls “granting a power li-
cense.”

Within the bureaucratic apparatus that is the
processor, a core is granted a different power license
depending on the kind of instructions it is executing.
For all AVX instructions, and for some simple AVX2
instructions like loads and adds, the core gets to run
on the modest LVL0_TURBO_LICENSE. For complex
AVX2 instructions it gets the regular LVL1_TURBO_-
LICENSE, while the cores lucky enough to run AVX-
512 win a premium LVL2_TURBO_LICENSE.

Also, the core’s frequency gets capped by the
PCU to a lower value, which is referred as the AVX2
Turbo frequency. For commercial desktop and lap-
tops CPUs, this applies to not just the core running
vector code but to all cores in the same processor.

This led me to wonder: what is happening to
the wide SIMD units of the other cores during that
time? Are they all powered-on all together? If so,
could this be used to make our processes have a lit-
tle chat without bothering the OS with expensive
syscalls?

55

Latency is key

With this rough idea of the inner workings of the In-
tel’s CPU power management, I wrote a tiny snippet
of code that launches two processes with the ability
to communicate without any nasty interaction with
the OS.

1 #include <immintrin . h>
#include <s td i o . h>

3
#define TIME_SCALE 1 .0

5 #define BUFSZ 0x400

7 void bs l e ep (uint64_t) ;
void send (uint8_t) ;

9 void recv (void) ;

11 int main () {
pid_t pid ;

13
i f ((pid = fo rk ()) == 0) {

15 recv () ;
} else i f (pid != −1) {

17 send (’P ’) ;
send (’ o ’) ;

19 send (’C ’) ;
b s l e ep (0 x400000000) ;

21 k i l l (pid , 9) ;
}

23 return 0 ;
}

25
void bs l e ep (uint64_t c l k) {

27 uint64_t beg , end ;
uint32_t hi0 , lo0 , hi1 , l o1 ;

29 asm volat i le (
" cpuid \n\ t "

31 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

33 "mov %%eax , %1\n\ t "
: "=r " (h i0) , "=r " (l o0) : :

35 "%rax" , "%rbx" , "%rcx " , "%rdx"
) ;

37 end = beg = (((uint64_t) hi0 << 32) | l o0) ;
while (end − beg < c lk) {

39 asm volat i le (
" cpuid \n\ t "

41 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

43 "mov %%eax , %1\n\ t "
"pause\n\ t "

45 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

47) ;
end = (((uint64_t) hi1 << 32) | l o1) ;

49 }
}

One parameter offered by the code is TIME_-
SCALE, which you can set at your convenience in
case your plotting utility doesn’t implement hori-
zontal zooming, or if you wish to pin the processes
to far away cores.

As we’d like to eventually store some measure-
ments, BUFSZ provides a way to delay the unavoid-
able write() call, because the longer we can prolong
our abstinence from kernel communication, the bet-
ter.

For each bit to be transmitted, the sender pro-
cess either executes a very long succession of AVX2
multiplications, or enters a busy loop, doing noth-
ing for long enough that the PCU decides to revoke
its power license, powering off the vector execution
units.

Another process, the receiver, runs a short burst
of vector instructions, then also sleeps for enough
time that the PCU decides to revoke its power li-
cense. The receiver process is also keeping track of
its execution speed via the rdtsc instruction, peri-
odically dumping it to stdout.

void send (uint8_t c) {
2 for (int i =0; i <8; i++) {

uint8_t b i t = (c >> i & 1) ;
4 i f (b i t) {

for (uint64_t i =0; i <0x4000∗SCALE; i++){
6 asm volat i le (

"pushq $0x40000000\ r \n"
8 " vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

" vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
10 "mov $10000 , %%ecx\ r \n"

" loop1 : \ r \n"
12 "vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

"dec %%ecx\ r \n"
14 " jnz loop1 \ r \n"

"popq %%rcx \ r \n"
16 : : :

) ;
18 bs l e ep (0 x20000) ;

}
20 } else {

bs l e ep (0 x8db6db6d ∗ SCALE) ;
22 }

f p r i n t f (s tde r r , " t i c k %d\n" , b i t) ;
24 }

}

56

1 void recv (void) {
uint64_t beg , end , i = 0 ;

3 uint32_t hi0 , lo0 , hi1 , l o1 ;
stat ic uint64_t time [BUFSZ] ;

5 stat ic char buf [0 x10000] , ∗ i t = buf ;

7 while (1) {
asm volat i le (

9 " cpuid \n\ t "
" rd t s c \n\ t "

11 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

13 : "=r " (h i0) , "=r " (l o0) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

15) ;
asm volat i le (

17 "pushq $0x40000000\ r \n"
" vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

19 " vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
"mov $10000 , %%ecx\ r \n"

21 " loop : \ r \n"
"vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

23 "dec %%ecx\ r \n"
" jnz loop \ r \n"

25 "popq %%rcx \ r \n"
: : :

27) ;
asm volat i le (

29 " cpuid \n\ t "
" rd t s c \n\ t "

31 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

33 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

35) ;
beg = (((uint64_t) hi0 << 32) | l o0) ;

37 end = (((uint64_t) hi1 << 32) | l o1) ;
time [i++] = end − beg ;

39
bs l e ep (0 x1000000) ;

41
i f (i == BUFSZ) {

43 i = 0 ;
for (uint64_t i = 0 ; i < 1024 ; i++) {

45 i t += s p r i n t f (i t , "%lu \n" , time [i]) ;
}

47 p r i n t f ("%s " , buf) ;
i t = buf ;

49 }
}

51 }

Employees must
wash hands before
returning to libc

If the receiver process is running during a qui-
escent period of the sender process, meaning that
the vector registers are powered down, it will run
at about half the speed for at least 150K clock cy-
cles, which is roughly the warm-up period on Coffee
Lake. Otherwise, it will dash forth at full speed. Re-
peating this enough times, the receiver can gather
sufficient evidence to know what bit was being sent
to him by his neighboring process.

On page 58 you can see the data plots taken from
some Kaby, Coffee Lake, and Sky Lake systems, and
a reference of the inverted ASCII signal, where the
most significant bits are sent last.

The End

What is actually happening inside the processor is
not completely clear to me. Perhaps the vector units
are not kept active all the time while executing AVX
code. Since the PCU on mixed scalar/vector work-
loads has already lowered the frequency of all the
cores, it has more room to adjust their voltages
quickly, and it is consequently able to power the
wide paths faster, ultimately with similar effects.
Let me know if you manage to figure this out, neigh-
bors!

Finally, a few words about why I think this is a
better way for processes to communicate.

First, the processes get to avoid those pesky
syscall instructions which make the software we
write daily completely non-portable.

Second, although not as fast as other IPC imple-
mentations, this one makes communication a CPU-
bound problem instead of an I/O-bound one, which,
as everybody knows, is a much nicer problem to
have.

Third, two processes in completely separate VMs
can now communicate, without the extra long and
boring configuration jobs that sysadmins have to do
in order to get the infrastructure to work.

This is why, neighbors, you should promptly ex-
periment with this method, as well as try to find
further novel and nifty ways to use our processors.
Maybe we will one day be able to multiply two vec-
tors with only syscall instructions!

57

Coffee Lake Warmup Time

Kaby Lake Warmup Time

Sky Lake Warmup Time

Reference Message (POC)

58

