
19:06 Selectively Exceptional UTF8; or,
Carefully tossing a spanner in the works.

by T. Goodspeed and R. Speers

In the good ol’ days, software might be writ-
ten once, in one programming language, with one
parser for each file format. In the modern world,
things can be considerably more complicated, with
pieces of a complex distributed system using many
programming language and databases, each with
their own parsers. This is especially true in today’s
era of programming via deep stacks of libraries and
frameworks, combined with proliferation of micro-
services, 39 it really matters how different languages
treat what should be the exact same sequence of
characters.

Sometimes it seems no one can agree on a charac-
ter encoding scheme – the olde’ ASCII ignores non-
English languages, and since the internet realized
the need for other language support, now develop-
ers consistently have to deal with frustrations like
str.encode(’utf-16’) conversions between func-
tion calls. But, if everyone dropped their debates
and adopted one standard – UTF-8,40 UTF-16, or
otherwise – we’d all finally be able to coexist – right?

Wrong. In this POC, we’ll demonstrate how the
differences between libraries and programming lan-
guages which parse the UTF-8 standard lead to in-
consistent behaviors with parsing and recognition.
We do not mean the numerous issues which have
been previously discussed regarding making charac-
ters that look the same (homoglyphs),41 file names
which trick users to executing them,42 or evading
input filtering and validation.43 Instead, we share
parser differentials with how these libraries consume
a sequence of bits, and interpret them as a set of
UTF-8 commands.

A good starting point for these differentials
would be to document differences in the validity of
bytestrings as UTF-8, from the perspective of each
language or library with which we might interact.

Here we describe the validity of many such strings,
grouping a number of UTF-8 implementations by
their behavior when faced with tricky input.

In the context of this paper, a string means a
string of bytes, rather than a decoded string of char-
acters. A string is tricky if it is accepted by at least
one interpreter and rejected by at least one other.

We present a number of bytestrings which are
legal as UTF-8 in some but not all of eleven tar-
get implementations in programming languages and
databases. Additionally, we present commentary
and observations that might be useful in identifying
other UTF-8 parser differentials and in exploiting
those that are known.

A Quick Review of UTF-8

Out of many different standards for encoding text
with characters unavailable in the ASCII standard,
UTF-8 by Ken Thompson and Rob Pike became the
dominant standard by 2009. Among other advan-
tages, it is a superset of ASCII that can describe
any codepoint available in the Unicode standard.

As of the Unicode Standard 6.0, UTF-8 consists
of between one and four bytes that represent a code-
point between U+0000 and U+10FFFF, with some re-
gions such as U+D800 to U+DFFF blacklisted. Bits
are distributed as in Table 2, but further restrictions
mean that only the sequences in Table 3 are consid-
ered to be well formed. We specify the version be-
cause these details have changed over time, with the
standard being considerably more strict now than
when it was first described.

39A curated list of different micro-service frameworks across languages should convince the reader that this is not limited to
a handful of languages.
git clone https://github.com/mfornos/awesome-microservices

40See RFC3629 - UTF-8, a transformation format of ISO 10646
41See references in Unicode Technical Report #36, or discussion of the internationalized domain name (IDN) homograph

attack.
42This is a trick that malware authors have used to make the user see filenames like happyexe.pdf, but which is really

happyfdp.exe.
43One example was MS09-20 (CVE-2009-1535) where “%c0%af” could be inserted into a protected path to bypass IIS’s

WebDAV path-based authentication system by making the path not match the authenticated rules list.

39

Plan9’s early implementations of UTF-8 decoded
to a 16-bit Rune, limiting UTF sequences to three
bytes. There is no mention in Pike and Thompson’s
Usenix paper44 of the forbidden surrogate pair range
from U+D800 to U+DFFF, and the three byte limit is
understood to be a bit arbitrary.

For years, Windows has supported UTF-16 as
wide characters (via the wchar_t type), but has used
code page 1252 (similar to ANSI) for 8-bit charac-
ters. Internally there has been support for code page
65001 which is UTF-8, however it was not exposed
until a build of Windows 10 as something that could
be set as the locale code page.45

Similar Situations

As discussed in the introduction, we are not dis-
cussing the well-studied areas of homographs, other
visual confusion, or filter evasion. Some prior work
makes observations which have similarities, or hint
at, the issues we discuss.

First, Unicode Technical Report #36 notes that
in older Unicode standards, parsers were permit-
ted to delete non-character code points, which led
to issues when an earlier filter (e.g., a Web IDS)
checked for some string like “exec(” that it didn’t
want to have present, but an attacker inserted an
invalid code sequence in the string – so that it
didn’t match.46 A different parser later in the stack
may instead choose to delete this non-character code
point, converting the string from “ex\uFEFFec(” to
“exec(”, thus possibly affecting the security of the
application.

Similarly, the same document references issues
that arise when systems compare text differently.47
Similar situations are what we discuss here, how-
ever we focus on the string being judged as illegal,
rather than compared differently, due to the parser
differentials.

Blatantly Illegal Letters

Some sequences are blatantly illegal, and ought to
be rejected by any decent interpreter. While we are
most interested by the subtle differences between
more modern interpreters, blatantly illegal charac-
ters are still useful in older languages, which might
happily interpret them as bytestrings without at-
tempting to parse them into runes.

As a general rule, older languages will only check
the validity of a string if asked to. As a concrete ex-
ample in Python 2, "FB80808080".decode("hex")
will not trigger an exception, because the illegal
string is only being interpreted as a string of bytes.
"FB80808080".decode("hex").decode("utf-8")
will trigger an exception, because the string is not
legal in any reasonable UTF-8 dialect.

So when dealing with blatantly illegal strings,
your difference of opinion might be found between
a script that does check for validity and a second
script written in the same language which does not.

44unzip pocorgtof19.pdf utf.pdf
45Insider build 17035 in November 2017.
46See clause “C7. When a process purports not to modify the interpretation of a valid coded character sequence, it shall

make no change to that coded character sequence other than the possible replacement of character sequences by their canonical-
equivalent sequences or the deletion of noncharacter code points.” (Emphasis added.)

47Unicode Technical Report #36 section 3.2

40

Ain’t no law against bad handwriting.
Now that we’ve covered the theory, let’s get down
to some quirks of specific UTF-8 implementations.
Follow along in Table 1 if you like.

Null Bytes

Null runes (U+0000) in UTF-8 are to be represented
as a null byte (00), rather than encoded as a two-
byte sequence (C0 80). Although Wikipedia men-
tions a “Modified UTF-8” that allows this sequence,
in practice it has been rather hard for us to find one
in surveying the major languages and libraries. All
implementations that reject anything seem to reject
the null pair.

What is worth noting, however, is that Postgres–
perhaps only Postgres–will reject those strings which
contain simple null bytes. You can express “hello
world\x00” in nearly any other implementation, but
perhaps for fear that naive C code might truncate
it, Postgres will reject it.

1 psq l (10 . 5 (Debian 10.5−1) , s e rv e r 9 . 6 . 7)
Type " help " f o r help .

3
user=> s e l e c t E ’ h e l l o \x00 ’ ;

5 ERROR: i nva l i d byte sequence f o r encoding "UTF8" : 0x00
user=>

All other languages could care less.

Welcome to the MariaDB monitor .
2 Server ve r s i on : 10.1.35 −MariaDB−1 Debian unstab le

4 Copyright (c) 2000 , 2018 , Oracle , MariaDB Corporation
Ab and other s .

6 MariaDB [(none)]> s e l e c t _utf8 X ’ 3500 ’ ;
+−−−−−−−−−−−−−−−+

8 | _utf8 X ’ 3500 ’ |
+−−−−−−−−−−−−−−−+

10 | 5 |
+−−−−−−−−−−−−−−−+

12 1 row in s e t (0 . 00 sec)

14 MariaDB [(none)]>

Surrogates

Some operating systems, such as Java and Windows,
prefer to internally represent characters as 16-bit
units. For this reason, UTF-16 uses pairs in the sur-
rogate range from D800 to DFFF to represent char-
acters which use more than sixteen bits. This same
range, U+D800 to U+DFFF, is reserved in the Unicode
standard so that no meaningful codepoints are ex-
cluded.

You can see in Table 1 that these surrogates are
perfectly legal in Python 2 and MariaDB, but trig-
ger exceptions in Python 3, Go, Rust, Perl 6, Java
and .NET. Further experimentation with this would
be handy, as surrogates can be either orphaned or
in their proper, matching pairs.

Byte Counts

As we mentioned earlier, the pattern of UTF8 bit
distribution shown in Figure 2 is very regular. An
implementation could easily be restricted to three or
four bytes by chance, and by continuing the pattern,
one can easily imagine a fifth or sixth byte. In fact,
implementations such as Perl 5 happily consume six
byte UTF-8 runes, and a seven-byte implementation
might be lurking in some interpreter, somewhere.

As a general rule, we see that ancient implemen-
tations support either three or six bytes, while the
most modern languages seem to support four bytes.
We’ve not yet found an implementation that sup-
ports only five bytes.

High Ranges

In addition to byte counts, implementations might
disagree on the range within that number of bytes
that they allow. Much like the surrogate range that
we discussed earlier, the highest values of a range
are sometimes restricted. These are the ranges that
are missing from Table 3.

Where can we use this?

We argue that this isn’t a theoretical issue. In-
deed, it can arise in real-world software development
projects.

One blog about micro-services hints at the issues
someone will encounter during development with
data representation, and the author does not discuss

48Blogger Richard Clayton wrote that “[w]e continuously encountered issues between the front and backend were serialization
issues (UI using an Array, but Java expecting a String). While this isn’t an issue specific to microservices, the problem is

41

security or character encoding differences.48 The is-
sues that such development teams feel is likely only
the tip-of-the-iceberg if they were to start consid-
ering where differentials in the parsing of data rep-
resentations could pose security or functionality is-
sues.

Dodging the Logs

Companies routinely rely on logging and the index-
ing of these logs for use in debugging, optimization,
security monitoring, and incident response. In the
case of a web service, imagine one implemented in
Python which presents a RESTful API that users
interact with. To help determine when users act
maliciously, all POST request activity is logged to a
MariaDB database.

The fourbyte case presents a situation where
the string F0908D88h is recognized and processed
by the Python service, but if that same string is
logged to a MariaDB or Postgres database, it will
be treated as illegal and the insert would fail.

Disappearing Data

In another case, user input may be taken in, vali-
dated, and acted upon in one language, and then
transferred to another system which rejects the
string due to a parser differential. As we are not ones
to advocate for keeping databases of everyone, espe-
cially not for minor misunderstandings of the speed
limit, this could be handy in a hypothetical case
where the drivers license database is maintained in
one implementation, but where the speeding ticket
database is implemented in a different language. In-
put to the speeding ticket database could come from
the “trusted” license database, but fail to be pro-
cessed and/or recorded in the ticketing system.

This may also be the case where a frontend writ-
ten in one language has it’s search index provided by
another. One example may be Python frontend such
as Reddit’s legacy code49 that uses Solr – a Java
project – to provide search indexing. We haven’t
verified any such issues, and expanded cases would
be needed to differentiate languages such as Python
and Java.

Future steps for operations

Someone looking to find vulnerable systems at scale
will need to overcome a few challenges. First,
the seemingly religious feud over mono-repos or
multiple-repos means that modifying a project like
github-analysis50 to return statistics about mul-
tiple languages in a repository, as opposed to the pri-
mary one, is insufficient to identify many cases. If a
repository, or set of them from one vendor, contains
code in multiple languages, false positives (e.g., unit
tests written in a different language, or dead code)
need to be suppressed. Finally, dev-ops artifacts
such as Dockerfiles, Cloud Formation scripts, and
similar likely should be analyzed to identify third-
party databases that are used. (Alternately code
could be searched for database connection strings.)

We believe that future work to screen for projects
where these bugs may exist will help bring this type
of vulnerability to something which can be detected
and mitigated.

Can everyone please agree already?
Of some hope for defenders is that Java, .NET,
Python3, Go, Rust, and Perl 6 seem to all support
very similar dialects, rejecting and accepting strings
in step with one another.

We the authors therefore offer a bounty of a pint
of good beer for each test case that newly differ-
entiates these languages, by triggering an exception
in one and not the others, up to a maximum of 64
beers.51

compounded when you increase the number of places these data representation issues can occur.”
https://rclayton.silvrback.com/failing-at-microservices

49git clone https://github.com/reddit-archive/reddit
50git clone https://github.com/benfred/github-analysis
51We the authors would also like to make clear that these will be excellent beers by our standards, but that Alexei Bulazel

would consider them unworthy, as they are insufficiently valuable to be collateral in a mortgage, nor even for payment of a
bridewealth or dowry.

42

perl5 python2 python3 golang rust perl6 mariadb postgres
mono dotnet java

surrogate EDA081 1 1 0 1 0
nullsurrog 3000EDA081 1 1 0 1 0
threehigh EDBFBF 1 1 0 1 0
fourbyte F0908D88 1 1 1 0 0
fourbyte2 F0BFBFBF 1 1 1 0 0
fourhigh F490BFBF 1 0 0 0 0
fivebyte FB80808080 1 0 0 0 0
sixbyte FD80808080 1 0 0 0 0
sixhigh FDBFBFBFBF 1 0 0 0 0
nullbyte 3031320033 1 1 1 1 0

Table 1. Legality of Tricky UTF8 Strings in Five Dialects

Scalar Unicode Value First Byte Second Third Fourth
00000000 00000000 0xxxxxxx 0xxxxxxx
00000000 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
00000000 zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2. UTF-8 Bit Distribution, Unicode 6.0

Scalar Unicode Value First Second Third Fourth
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8f 80..BF 80..BF

Table 3. Well-Formed UTF-8 Byte Strings, Unicode 6.0

43

