
18:08 A Guide to KLEE LLVM Execution Engine Internals
by Julien Vanegue

Greetings fellow neighbors!
It is my great pleasure to finally write my first

article in PoC‖GTFO after so many of you have con-
tributed excellent content in the past dozens of is-
sues that Pastor Laphroig put together for our en-
joyment. I have been waiting for this moment for
some time, and been harassed a few times, to fi-
nally come up with something worthwhile. Given
the high standards set upon all of us, I did not feel
like rushing it. Instead, I bring to you today what I
think will be a useful piece of texts for many fellow
hackers to use in the future. Apologies for any er-
rors that may have slipped from my understanding,
I am getting older after all, and my memory is not
what it used to be. Not like it has ever been infail-
lible but at least I used to remember where the cool
kids hung out. This is my attempt at renewing the
tradition of sharing knowledge through some more
informal channels.

Today, I would like to talk to you about KLEE,
an open source symbolic execution engine originally
developed at Stanford University and now main-
tained at Imperial College in London. Symbolic Ex-
ecution (SYMEX) stands somewhere between static
analysis of programs and [dynamic] fuzz testing.
While its theoretical foundations dates back from
the late seventies (King’s paper), practical appli-
cation of it waited until the late 2000s (such as
SAGE40 at Microsoft Research) to finally become
mainstream with KLEE in 2008. These tools have
been used in practice to find thousands of security
issues in software, going from simple NULL pointer
dereferences, to out of bound reads or writes for
both the heap and the stack, including use-after-
free vulnerabilities and other type-state issues that
can be easily defined using “asserts.”

In one hand, symbolic execution is able to un-
dergo concrete execution of the analyzed program
and maintains a concrete store for variable values as
the execution progresses, but it can also track path
conditions using constraints. This can be used to
verify the feasibility of a specific path. At the same
time, a process tree (PTree) of nodes (PTreeNode)
represent the state space as an ImmutableTree
structure. The ImmutableTree implements a copy-
on-write mechanism so that parts of the state

(mostly variable values) that are shared across the
node don’t have to be copied from state to state un-
less they are written to. This allows KLEE to scale
better under memory pressure. Such state contains
both a list of symbolic constraints that are known to
be true in this state, as well as a concrete store for
program variables on which constraints may or may
not be applied (but that are nonetheless necessary
so the program can execute in KLEE).

My goal in this article is not so much to show
you how to use KLEE, which is well understood,
but bring you a tutorial on hacking KLEE internals.
This will be useful if you want to add features or add
support for specific analysis scenarios that you care
about. I’ve spent hundreds of hours in KLEE inter-
nals and having such notes may have helped me in
the beginning. I hope it helps you too.

Now let’s get started.

Working with Constraints

Let’s look at the simple C program as a motivator.

int f c t (int a , int b) {
2 int c = 0 ;

i f (a < b)
4 c++;

else
6 c−−;

return c ;
8 }

10 int main (int argc , char ∗∗ argv) {
i f (argc != 3) return (−1) ;

12 int a = a to i (argv [1]) ;
int b = a to i (argv [2]) ;

14 i f (a < b)
return (0) ;

16 return f c t (a , b) ;
}

It is clear that the path starting in main and con-
tinuing in the first if (a < b) is infeasible. This is
because any such path will actually have finished
with a return (0) in the main function already.
The way KLEE can track this is by listing con-
straints for the path conditions.

This is how it works: first KLEE executes some
bootstrapping code before main takes control, then

40unzip pocorgtfo18.pdf automatedwhiteboxfuzzing.pdf

51

starts executing the first LLVM instruction of the
main function. Upon reaching the first if statement,
KLEE forks the state space (via function Executor-
::fork). The left node has one more constraint
(argc != 3) while the right node has constraint
(argc == 3). KLEE eventually comes back to its
main routine (Executor::run), adds the newly-
generated states into the set of active states, and
picks up a new state to continue analysis with.

Executor Class

The main class in KLEE is called the
Executor class. It has many methods such as
Executor::run(), which is the main method of
the class. This is where the set of states: added
states and removed states set are manipulated to
decide which state to visit next. Bear in mind that
nothing guarantees that next state in the Executor
class will be the next state in the current path.

Figure 26 shows all of the LLVM instructions
currently supported by KLEE.

• Call/Br/Ret: Control flow instructions.
These are cases where the program counter
(part of the state) may be modified by more
than just the size of the current instruction.
In the case of Call and Ret, a new ob-
ject StackFrame is created where local vari-
ables are bound to the called function and
destroyed on return. Defining new variables
may be achieved through the KLEE API
bindObjectInState().

• Add/Sub/Mul/*S*/U*/*Or*: The Signed and
Unsigned arithmetic instructions. The usual
suspects including bit shifting operations as
well.

• Cast operations (UItoFP, FPtoUI, IntToPtr,
PtrToInt, BitCast, etc.): used to convert
variables from one type to a variable of a dif-
ferent type.

• *Ext* instructions: these extend a variable to
use a larger number of bits, for example 8b
to 32b, sometimes carrying the sign bit or the
zero bit.

• F* instructions: the floating point arithmetic
instructions in KLEE. I dont myself do much

floating point analysis and I tend not to mod-
ify these cases, however this is where to look
if you’re interested in that.

• Alloca: used to allocate memory of a desired
size

• Load/Store: Memory access operations at a
given address

• GetElementPtr: perform array or structure
read/write at certain index

• PHI: This corresponds to the PHI function in
the Static Single Assignment form (SSA) as
defined in the literature.41

There are other instructions I am glossing over but
you can refer to the LLVM reference manual for an
exhaustive list.

So far the execution in KLEE has gone
through Executor::run() -> Executor::exe-
cuteInstruction() -> case ... but we have
not looked at what these cases actually do in
KLEE. This is handled by a class called the
ExecutionState that is used to represent the state
space.

ExecutionState Class

This class is declared in include/klee/Execution-
State.h and contains mostly two objects:

• AddressSpace: contains the list of all meta-
data for the process objects in this state,
including global, local, and heap objects.
The address space is basically made of an
array of objects and routines to resolve
concrete addresses to objects (via method
AddressSpace::resolveOne to resolve one
by picking up the first match, or method
AddressSpace::resolve for resolving to a
list of objects that may match). The
AddressSpace object also contains a concrete
store for objects where concrete values can
be read and written to. This is useful when
you’re tracking a symbolic variable but sud-
dently need to concretize it to make an ex-
ternal concrete function call in libc or some
other library that you haven’t linked into your
LLVM module.

41unzip pocorgtfo18.pdf cytron.pdf

52

1 $ grep −r n i ’ case I n s t r u c t i o n : : ’ l i b /Core/
l i b /Core/Executor . cpp : 2 4 5 2 : case I n s t r u c t i o n : : Ret : {

3 l i b /Core/Executor . cpp : 2 5 9 1 : case I n s t r u c t i o n : : Br : {
l i b /Core/Executor . cpp : 2 6 1 9 : case I n s t r u c t i o n : : Switch : {

5 l i b /Core/Executor . cpp : 2 7 3 1 : case I n s t r u c t i o n : : Unreachable :
l i b /Core/Executor . cpp : 2 7 3 9 : case I n s t r u c t i o n : : Invoke :

7 l i b /Core/Executor . cpp : 2 7 4 0 : case I n s t r u c t i o n : : Ca l l : {
l i b /Core/Executor . cpp : 2 9 8 7 : case I n s t r u c t i o n : : PHI : {

9 l i b /Core/Executor . cpp : 2 9 9 5 : case I n s t r u c t i o n : : S e l e c t : {
l i b /Core/Executor . cpp : 3 0 0 6 : case I n s t r u c t i o n : : VAArg :

11 l i b /Core/Executor . cpp : 3 0 1 2 : case I n s t r u c t i o n : : Add : {
l i b /Core/Executor . cpp : 3 0 1 9 : case I n s t r u c t i o n : : Sub : {

13 l i b /Core/Executor . cpp : 3 0 2 6 : case I n s t r u c t i o n : : Mul : {
l i b /Core/Executor . cpp : 3 0 3 3 : case I n s t r u c t i o n : : UDiv : {

15 l i b /Core/Executor . cpp : 3 0 4 1 : case I n s t r u c t i o n : : SDiv : {
l i b /Core/Executor . cpp : 3 0 4 9 : case I n s t r u c t i o n : :URem: {

17 l i b /Core/Executor . cpp : 3 0 5 7 : case I n s t r u c t i o n : : SRem: {
l i b /Core/Executor . cpp : 3 0 6 5 : case I n s t r u c t i o n : : And : {

19 l i b /Core/Executor . cpp : 3 0 7 3 : case I n s t r u c t i o n : : Or : {
l i b /Core/Executor . cpp : 3 0 8 1 : case I n s t r u c t i o n : : Xor : {

21 l i b /Core/Executor . cpp : 3 0 8 9 : case I n s t r u c t i o n : : Shl : {
l i b /Core/Executor . cpp : 3 0 9 7 : case I n s t r u c t i o n : : LShr : {

23 l i b /Core/Executor . cpp : 3 1 0 5 : case I n s t r u c t i o n : : AShr : {
l i b /Core/Executor . cpp : 3 1 1 5 : case I n s t r u c t i o n : : ICmp : {

25 l i b /Core/Executor . cpp : 3 2 0 7 : case I n s t r u c t i o n : : Al loca : {
l i b /Core/Executor . cpp : 3 2 2 1 : case I n s t r u c t i o n : : Load : {

27 l i b /Core/Executor . cpp : 3 2 2 6 : case I n s t r u c t i o n : : Store : {
l i b /Core/Executor . cpp : 3 2 3 4 : case I n s t r u c t i o n : : GetElementPtr : {

29 l i b /Core/Executor . cpp : 3 2 8 9 : case I n s t r u c t i o n : : Trunc : {
l i b /Core/Executor . cpp : 3 2 9 8 : case I n s t r u c t i o n : : ZExt : {

31 l i b /Core/Executor . cpp : 3 3 0 6 : case I n s t r u c t i o n : : SExt : {
l i b /Core/Executor . cpp : 3 3 1 5 : case I n s t r u c t i o n : : IntToPtr : {

33 l i b /Core/Executor . cpp : 3 3 2 4 : case I n s t r u c t i o n : : PtrToInt : {
l i b /Core/Executor . cpp : 3 3 3 4 : case I n s t r u c t i o n : : BitCast : {

35 l i b /Core/Executor . cpp : 3 3 4 3 : case I n s t r u c t i o n : : FAdd : {
l i b /Core/Executor . cpp : 3 3 5 8 : case I n s t r u c t i o n : : FSub : {

37 l i b /Core/Executor . cpp : 3 3 7 2 : case I n s t r u c t i o n : : FMul : {
l i b /Core/Executor . cpp : 3 3 8 7 : case I n s t r u c t i o n : : FDiv : {

39 l i b /Core/Executor . cpp : 3 4 0 2 : case I n s t r u c t i o n : : FRem: {
l i b /Core/Executor . cpp : 3 4 1 7 : case I n s t r u c t i o n : : FPTrunc : {

41 l i b /Core/Executor . cpp : 3 4 3 4 : case I n s t r u c t i o n : : FPExt : {
l i b /Core/Executor . cpp : 3 4 5 0 : case I n s t r u c t i o n : : FPToUI : {

43 l i b /Core/Executor . cpp : 3 4 6 7 : case I n s t r u c t i o n : : FPToSI : {
l i b /Core/Executor . cpp : 3 4 8 4 : case I n s t r u c t i o n : : UIToFP : {

45 l i b /Core/Executor . cpp : 3 5 0 0 : case I n s t r u c t i o n : : SIToFP : {
l i b /Core/Executor . cpp : 3 5 1 6 : case I n s t r u c t i o n : :FCmp: {

47 l i b /Core/Executor . cpp : 3 6 0 8 : case I n s t r u c t i o n : : In se r tVa lue : {
l i b /Core/Executor . cpp : 3 6 3 5 : case I n s t r u c t i o n : : ExtractValue : {

49 l i b /Core/Executor . cpp : 3 6 4 5 : case I n s t r u c t i o n : : Fence : {
l i b /Core/Executor . cpp : 3 6 4 9 : case I n s t r u c t i o n : : InsertElement : {

51 l i b /Core/Executor . cpp : 3 6 9 1 : case I n s t r u c t i o n : : ExtractElement : {
l i b /Core/Executor . cpp : 3 7 2 4 : case I n s t r u c t i o n : : Shu f f l eVec to r :

Figure 26. LLVM Instructions supported by KLEE

53

• ConstraintManager: contains the list of all
symbolic constraints available in this state. By
default, KLEE stores all path conditions in the
constraint manager for that state, but it can
also be used to add more constraints of your
choice. Not all objects in the AddressSpace
may be subject to constraints, which is left to
the discretion of the KLEE programmer. Ver-
ifying that these constraints are satisfiable can
be done by calling solver->mustBeTrue() or
solver->MayBeTrue() methods, which is a
solver-independent API provided in KLEE to
call SMT or Z3 independently of the low-level
solver API. This comes handy when you want
to check the feasibility of certain variable val-
ues during analysis.

Every time the ::fork() method is called,
one execution state is split into two where pos-
sibly more constraints or different values have
been inserted in these objects. One may call the
Executor::branch() method directly to create a
new state from the existing state without creating
a state pair as fork would do. This is useful when
you only want to add a subcase without following
the exact fork expectations.

Executor::executeMemoryOperation(),
MemoryObject and ObjectState
Two important classes in KLEE are MemoryObject
and ObjectState, both defined in lib/klee/-
Core/Memory.h.

The MemoryObject class is used to represent
an object such as a buffer that has a base ad-
dress and a size. When accessing such an object,
typically via the Executor::executeMemoryOper-
ation() method, KLEE automatically ensures that
accesses are in bound based on known base address,
desired offset, and object size information. The
MemoryObject class provides a few handy methods:
(. . .)
r e f <ConstantExpr> getBaseExpr ()
r e f <ConstantExpr> getSizeExpr ()
r e f <Expr> getOf f se tExpr (r e f <Expr> po in t e r)
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> po in t e r)
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> pointer , unsigned bytes)
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t)
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t , unsigned bytes)

Using these methods, checking for boundary con-
ditions is child’s play. It becomes more interesting
when symbolics are used as the conditions that must
be checked involves more than constants, depending
on whether the base address, the offset or the index
are symbolic values (or possibly depending on the
source data for certain analyses, for example taint
analysis).

While the MemoryObject somehow takes care of
the spatial integrity of the object, the ObjectState
class is used to access the memory value itself in the
state. Its most useful methods are:

// return by t e s read .
r e f <Expr> read (r e f <Expr> o f f s e t ,

Expr : : Width width) ;
r e f <Expr> read (unsigned o f f s e t ,

Expr : : Width width) ;
r e f <Expr> read8 (unsigned o f f s e t) ;

// return by t e s wr i t t en .
void wr i t e (unsigned o f f s e t ,

r e f <Expr> value) ;
void wr i t e (r e f <Expr> o f f s e t ,

r e f <Expr> value) ;
void wr i te8 (unsigned o f f s e t ,

uint8_t value) ;
void wri te16 (unsigned o f f s e t ,

uint16_t value) ;
void wri te32 (unsigned o f f s e t ,

uint32_t value) ;
void wri te64 (unsigned o f f s e t ,

uint64_t value) ;

Objects can be either concrete or symbolic, and
these methods implement actions to read or write
the object depending on this state. One can switch
from concrete to symbolic state by using methods:

void makeConcrete () ;
void makeSymbolic () ;

These methods will just flush symbolics if we
become concrete, or mark all concrete variables as
symbolics from now on if we switch to symbolic
mode. Its good to play around with these meth-
ods to see what happens when you write the value
of a variable, or make a new variable symbolic and
so on.

When Instruction::Load and ::Store are
encountered, the Executor::executeMemory-
Operation() method is called where symbolic
array bounds checking is implemented. This
implementation uses a mix of MemoryObject,
ObjectState, AddressSpace::resolveOne() and

54

MemoryObject::getBoundsCheckOffset() to fig-
ure out whether any overflow condition can happen.
If so, it calls KLEE’s internal API Executor::-
terminateStateOnError() to signal the memory
safety issue and terminate the current state. Sym-
bolic execution will then resume on other states so
that KLEE does not stop after the first bug it finds.
As it finds more errors, KLEE saves the error lo-
cations so it won’t report the same bugs over and
over.

Special Function Handlers

A bunch of special functions are defined in KLEE
that have special handlers and are not treated
as normal functions. See lib/Core/SpecialFun-
ctionHandler.cpp.

Some of these special functions are called from
the Executor::executeInstruction() method in
the case of the Instruction::Call instruction.

All the klee_* functions are internal KLEE
functions which may have been produced by anno-
tations given by the KLEE analyst. (For example,
you can add a klee_assume(p) somewhere in the
analyzed program’s code to say that p is assumed
to be true, thereby some constraints will be pushed
into the ConstraintManager of the currenet state
without checking them.) Other functions such as
malloc, free, etc. are not treated as normal function
in KLEE. Because the malloc size could be sym-
bolic, KLEE needs to concretize the size according
to a few simplistic criteria (like size = 0, size =
28, size = 216, etc.) to continue making progress.
Suffice to say this is quite approximate.

This logic is implemented in the
Executor::executeAlloc() and ::executeFree()
methods. I have hacked around some modifications
to track the heap more precisely in KLEE, how-
ever bear in mind that KLEE’s heap as well as the
target program’s heap are both maintained within
the same address space, which is extremely intru-
sive. This makes KLEE a bad framework for layout
sensitive analysis, which many exploit generation
problems require nowadays. Other special functions
include stubs for Address Sanitizer (ASan), which
is now included in LLVM and can be enabled while
creating LLVM code with clang. ASan is mostly use-
ful for fuzzing so normally invisible corruptions turn

into visible assertions. KLEE does not make much
use of these stubs and mostly generate a warning if
you reach one of the ASan-defined stubs.

Other recent additions were klee_open_merge()
and klee_close_merge() that are an annotation
mechanism to perform selected merging in KLEE.
Merging happens when you come back from a con-
ditional contruct (e.g., switch, or when you must
define whether to continue or break from a loop) as
you must select which constraints and values will
hold in the state immediately following the merge.
KLEE has some interesting merging logic imple-
mented in lib/Core/MergeHandler.cpp that are
worth taking a look at.

Experiment with KLEE for yourself!
I did not go much into details of how to install KLEE
as good instructions are available onine.42 Try it for
yourself!

I personally use LLVM 3.4 mostly but KLEE also
supports LLVM 3.5 reliably, although as far as I
know 3.4 is still recommended.

My setup is an amd64 machine on Ubuntu 16.04
that has most of what you will need in packages. I
recommend building LLVM and KLEE from sources
as well as all dependencies (e.g., Z343 and/or STP44)
that will help you avoid weird symbol errors in your
experiments.

A good first target to try KLEE on is coreutils,
which is what prettty much everybody uses in their
research papers evaluation nowadays. Coreutils is
well tested so new bugs in it are scarce, but its good
to confirm everything works okay for you. A tuto-
rial on how to run KLEE on coreutils is available as
part of the project website.45

I personally used KLEE on various targets: core-
utils, busybox, as well as other standard network
tools that take input from untrusted data. These
will require a standalone research paper explaining
how KLEE can be used to tackle these targets.

42http://klee.github.io/build-llvm34/
43unzip pocorgtfo18.pdf z3.pdf
44unzip pocorgtfo18.pdf stp.pdf
45http://klee.github.io/docs/coreutils-experiments/

55

$ grep −in add\(l i b /Core/ Spec ia lFunct ionHandler . cpp
2 66:# de f i n e add (name , handler , r e t) { name , \

81 : add (" c a l l o c " , handleCal loc , t rue) ,
4 82 : add (" f r e e " , handleFree , f a l s e) ,

83 : add ("klee_assume" , handleAssume , f a l s e) ,
6 84 : add ("klee_check_memory_access" , handleCheckMemoryAccess , f a l s e) ,

85 : add (" klee_get_valuef " , handleGetValue , t rue) ,
8 86 : add ("klee_get_valued" , handleGetValue , t rue) ,

87 : add (" klee_get_value l " , handleGetValue , t rue) ,
10 88 : add (" k l ee_get_va lue l l " , handleGetValue , t rue) ,

89 : add ("klee_get_value_i32" , handleGetValue , t rue) ,
12 90 : add ("klee_get_value_i64" , handleGetValue , t rue) ,

91 : add (" k lee_def ine_f ixed_object " , handleDef ineFixedObject , f a l s e) ,
14 92 : add (" klee_get_obj_size " , handleGetObjSize , t rue) ,

93 : add (" klee_get_errno " , handleGetErrno , t rue) ,
16 94 : add (" klee_is_symbol ic " , handleIsSymbol ic , t rue) ,

95 : add ("klee_make_symbolic" , handleMakeSymbolic , f a l s e) ,
18 96 : add ("klee_mark_global " , handleMarkGlobal , f a l s e) ,

97 : add ("klee_open_merge" , handleOpenMerge , f a l s e) ,
20 98 : add ("klee_close_merge " , handleCloseMerge , f a l s e) ,

99 : add (" klee_prefer_cex " , handlePreferCex , f a l s e) ,
22 100 : add (" klee_posix_prefer_cex " , handlePosixPreferCex , f a l s e) ,

101 : add (" klee_print_expr " , handlePrintExpr , f a l s e) ,
24 102 : add (" klee_print_range " , handlePrintRange , f a l s e) ,

103 : add (" k lee_set_fork ing " , handleSetForking , f a l s e) ,
26 104 : add (" klee_stack_trace " , handleStackTrace , f a l s e) ,

105 : add ("klee_warning" , handleWarning , f a l s e) ,
28 106 : add ("klee_warning_once" , handleWarningOnce , f a l s e) ,

107 : add (" k l e e_a l i a s_funct i on " , handleAl iasFunct ion , f a l s e) ,
30 108 : add ("mal loc " , handleMalloc , t rue) ,

109 : add (" r e a l l o c " , handleReal loc , t rue) ,
32 112 : add (" xmalloc " , handleMalloc , t rue) ,

113 : add (" x r e a l l o c " , handleReal loc , t rue) ,
34 116 : add ("_ZdaPv" , handleDeleteArray , f a l s e) ,

118 : add ("_ZdlPv" , handleDelete , f a l s e) ,
36 121 : add ("_Znaj" , handleNewArray , t rue) ,

123 : add ("_Znwj" , handleNew , t rue) ,
38 128 : add ("_Znam" , handleNewArray , t rue) ,

130 : add ("_Znwm" , handleNew , t rue) ,
40 134 : add ("__ubsan_handle_add_overflow" , handleAddOverflow , f a l s e) ,

135 : add ("__ubsan_handle_sub_overflow" , handleSubOverflow , f a l s e) ,
42 136 : add ("__ubsan_handle_mul_overflow" , handleMulOverflow , f a l s e) ,

137 : add ("__ubsan_handle_divrem_overflow" , handleDivRemOverflow , f a l s e) ,
44 jvanegue@llvmlab1 :~/ hk lee$

Figure 27. KLEE Special Function Handlers

56

Symbolic Heap Execution in KLEE

For heap analysis, it appears that KLEE has a
strong limitation of where heap chunks for KLEE
as well as for the target program are maintained
in the same address space. One would need to in-
troduce an allocator proxy46 if we wanted to track
any kind of heap layout fidelity for heap prediction
purpose. There are spatial issues to consider there
as symbolic heap size may lead to heap state space
explosion, so more refined heap management may
be required. It may be that other tools relying on
selective symbolic execution (S2E)47 may be more
suitable for some of these problems.

Analyzing Distributed Applications.

These are more complex use-cases where KLEE
must be modified to track state across distributed
component.48 Several industrially-sized programs
use databases and key-value stores and it is inter-
esting to see what symbolic execution model can be
defined for those. This approach has been applied
to distributed sensor networks and could also be ex-
perimented on distributed software in the cloud.

You can either obtain LLVM code by compiling
with the clang compiler (3.4 for KLEE) or use a
decompiler like McSema49 and its ReMill library.

There are enough success stories to validate sym-
bolic execution as a practical technology; I encour-
age you to come up with your own experiments, to
figure out what is missing in KLEE to make it work
for you. Getting familiar with every corner cases of
KLEE can be very time consuming, so an approach
of “least modification” is typically what I follow.

Beware of restricting yourself to artificial test
suites as, beyond their likeness to real world code,
they do not take into account all the environmental
dependencies that a real project might have. A typ-
ical example is that KLEE does not support inline
assembly. Another is the heap intrusiveness previ-
ously mentioned. These limitations might turn a
golden technique like symbolic execution into a vac-
uous technology if applied to a bad target.

I leave you to that. Have fun and enjoy!

—Julien

46unzip pocorgtfo18.pdf nextgendebuggers.pdf
47unzip pocorgtfo18.pdf s2e.pdf
48unzip pocorgtfo18.pdf kleenet.pdf
49git clone https://github.com/trailofbits/mcsema

57

