
18:04 Concealing ZIP Files in NES Cartridges
by Vi Grey

Hello, neighbors.

This story begins with the fantastic work de-
scribed in PoC‖GTFO 14:12, which presented
an NES ROM that was also a PDF. That file,
pocorgtfo14.pdf, was by coincidence also a ZIP
file. That issue inspired me to learn 6502 Assembly,
develop an NES game from scratch, and burn it onto
a physical cartridge for the #tymkrs.

During development, I noticed that the unused
game space was just being used as padding and that
any data could be placed in that padding. Although
I ended up using that space for something else in the
game, I realized that I could use padding space to
make an NES ROM that is also a ZIP file. This
polyglot file wouldn’t make the NES ROM any big-
ger than it originally was. I quickly got to work on
this idea.

The method described in this article to create an
NES + ZIP polyglot file is different from that which
was used in PoC‖GTFO 14:12. In that method,
none of the ZIP file data is saved inside the NES
ROM itself. My method is able to retain the ZIP
file data, even when it burned onto a cartridge. If
you rip the data off of a cartridge, the resulting NES
ROM file will still be an NES + ZIP polyglot file.

Numbers and ranges included in figures in this
article will be in Hexadecimal. Range values are big-
endian and ranges work the same as Python slices,
where [x:y] is the range of x to, but not including,
y.

iNES File Format
This article focuses on the iNES file format. This
is because, as was described in PoC‖GTFO 14:12,
iNES is essentially the de facto standard for NES
ROM files. Figure 8 shows the structure of an NES
ROM in the iNES file format that fits on an NROM-
128 cartridge.10

The first sixteen bytes of the file MUST be the
iNES Header, which provides information for NES
Emulators to figure out how to play the ROM.

Following the iNES Header is the 16 KiB PRG
ROM. If the PRG ROM data doesn’t fill up that en-
tire 16 KiB, then the PRG ROM will be padded. As
long as the PRG padding isn’t actually being used,
it can be any byte value, as that data is completely
ignored. The final six bytes of the PRG ROM data
are the interrupt vectors, which are required.

Eight kilobytes of CHR ROM data follows the
PRG ROM.

Start of iNES File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 8. iNES File Format

10NROM-128 is a board that does not use a mapper and only allows a PRG ROM size of 16 KiB.

17



ZIP File Format
There are two things in the ZIP file format that we
need to focus on to create this polyglot file, the End
of Central Directory Record and the Central Direc-
tory File Headers.

End of Central Directory Record

To find the data of a ZIP file, a ZIP file extractor
should start searching from the back of the file to-
wards the front until it finds the End of Central Di-
rectory Record. The parts we care about are shown
in Figure 9.

The End of Central Directory Record begins
with the four-byte big-endian signature 504B0506.

Twelve bytes after the end of the signature is
the four-byte Central Directory Offset, which states
how far from the beginning of the file the start of
the Central Directory will be found.

The following two bytes state the ZIP file com-
ment length, which is how many bytes after the ZIP
file data the ZIP file comment will be found. Two
bytes for the comment length means we have a maxi-
mum length value of 65,535 bytes, more than enough
space to make our polyglot file.

Start of End of Central Directory Record

End of Central Directory Record
Signature (504B0506) [0000:0004]

. . . [0004:0010]

Central Directory Offset [0010:0014]

Comment Length (L) [0014:0016]

ZIP File Comment [0016:0016 + L]

Figure 9. End of Central Directory Record Format

Central Directory File Headers

For every file or directory that is zipped in the ZIP
file, a Central Directory File Header exists. The
parts we care about are shown in Figure 10.

Each Central Directory File Header starts with
the four-byte big-endian signature 504B0102.

38 bytes after the signature is a four-byte Lo-
cal Header Offset, which specifies how far from the
beginning of the file the corresponding local header
is.

Start of a Central Directory File Header

Central Directory File Header
Signature (504B0102) [0000:0004]

. . . [0004:002A]

Local Header Offset [002A:002E]

. . . [002E:]

Figure 10. Central Directory File Header Format

11unzip pocorgtfo18.pdf APPNOTE.TXT

19



Miscellaneous ZIP File Fun

Five bytes into each Central Directory File Header
is a byte that determines which Host OS the file
attributes are compatible for.

The document, “APPNOTE.TXT - .ZIP File
Format Specification” by PKWARE, Inc., specifies
what Host OS goes with which decimal byte value.11
I included a list of hex byte values for each Host OS
below.

1 00 − MS−DOS and OS/2
01 − Amiga

3 02 − OpenVMS
03 − UNIX

5 04 − VM/CMS
05 − Atar i ST

7 06 − OS/2 H.P.F . S .
07 − Macintosh

9 08 − Z−System
09 − CP/M

11 0A − Windows NTFS
0B − MVS (OS/390 − Z/OS)

13 0C − VSE
0D − Acorn Risc

15 0E − VFAT
0F − Alte rnate MVS

17 10 − BeOS
11 − Tandem

19 12 − OS/400
13 − OS/X (Darwin )

21 (14−FF) − Unused

Although 0A is specified for Windows NTFS and
0B is specified for MVS (OS/390 - Z/OS), I kept
getting the Host OS value of TOPS-20 when I used
0A and NTFS when I used 0B.

I ended up deciding to set the Host OS for all
of the Central Directory File Headers to Atari ST.
With that said, I have tested every Host OS value
from 00 to FF on this file and it extracted properly
for every value. Different Host OS values may pro-
duce different read, write, and execute values for the
extracted files and directories.

Start of iNES + ZIP Polyglot File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:YYyy]

ZIP File Data [YYyy:400A]

Comment Length (0602) [4008:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 11. iNES + ZIP Polyglot File Format

iNES + ZIP File Format

With this information about iNES files and ZIP files,
we can now create an iNES + ZIP polyglot file, as
shown in Figure 11.

Here, the first sixteen bytes of the file continue
to be the same iNES header as before.

The PRG ROM still starts in the same location.
Somewhere in the PRG Padding an amount of bytes
equal to the length of the ZIP file data is replaced
with the ZIP file data. The ZIP file data starts at
hex offset YYyy and ends right before the PRG Inter-
rupt Vectors. This ZIP file data MUST be smaller
than or equal to the size of the PRG Padding to
make this polyglot file.

Local Header Offsets and the Central Directory
Offset of the ZIP file data are updated by adding the
little-endian hex value yyYY to them and the ZIP file
comment length is set to the little-endian hex value
0602 (8,198 in Decimal), which is the length of the
PRG Interrupt Vectors plus the CHR ROM (8 KiB).

PRG Interrupt Vectors and CHR ROM data re-
main unmodified, so they are still the same as be-
fore.

Because the iNES header is the same, the PRG
and CHR ROM are still the correct size, and none
of the required PRG ROM data or any of the CHR
ROM data were modified, this file is still a com-
pletely standard NES ROM. The NES ROM file
does not change in size, so there is no extra “garbage
data” outside of the NES ROM file as far as NES
emulators are concerned.

With the ZIP file offsets being updated and all
12The only ZIP file extractor I have gotten any warnings from with this polyglot file was 7-Zip for Windows specifically, with

the warning, “The archive is open with offset.” The polyglot file still extracted properly.

20



data after the ZIP file data being declared as a ZIP
file comment, this file is a standard ZIP file that your
ZIP file extractor will be able to properly extract.12

NES Cartridge
The PRG and CHR ROMs of this polyglot file can
be burned onto EPROMs and put on an NROM-
128 board to make a completely functioning NES
cartridge.

Ripping the NES ROM from the cartridge and
turning it back into an iNES file will result in the file
being a NES + ZIP polyglot file again. It is there-
fore possible to sneak a secret ZIP file to someone
via a working NES cartridge.

Don’t be surprised if that crappy bootleg copy of
Tetris I give you is also a ZIP file containing secret
documents!

Source Code
This NES + ZIP polyglot file is a quine.13 Unzip
it and the extracted files will be its source code.14
Compile that source code and you’ll create another
NES + ZIP polyglot file quine that can then be un-
zipped to get its source code.

I was able to make this file contain its own source
code because the source code itself was quite small
and highly compressible in a ZIP file.

13unzip pocorgtfo18.pdf neszip-example.nes
14unzip neszip-example.nes

21


