
16:09 Code Golf and Obfuscation
with Genetic Algorithm Based Symbolic Regression

by JBS

Any reasonably complex piece of code is bound
to have at least one lookup table (LUT) contain-
ing integer or string constants. In fact, the entire
data section of an executable can be thought of as
a giant lookup table indexed by address. If we had
some way of obfuscating the lookup table address-
ing, it would be sure to frustrate reverse engineers
who rely on juicy strings and static analysis.

For example, consider this C function.

char magic(int i) {
return (89 ^ (((859 - (i | -53)) | ((334 + i) | (i /

(i & -677)))) & (i - ((i * -50) | i | -47))))
+ ((-3837 << ((i | -2) ^ i)) >> 28) / ((-6925 ^
((35 << i) >> i)) >> (30 * (-7478 ^ ((i << i) >>
19))));

}

Pretty opaque, right? But look what happens when
we iterate over the function.

int main(int argc, char** argv) {
for(int i=10; i<=90; i+=10) {

printf("%c", magic(i));
}

}

Lo and behold, it prints “PoC‖GTFO”! Now, imag-
ine if we could automatically generate a similarly
opaque, magical function to replicate any string,
lookup table, or integer mapping we wanted. Neigh-
bors, read on to find out how.

Regression is a fundamental tool for establishing
functional relationships between variables in data
and makes whole fields of empirically-driven science
possible. Traditionally, a target model is selected
a priori (e.g., linear, power-law, polynomial, Gaus-
sian, or rational), the fit is performed by an appro-
priate linear or nonlinear method, and then its over-
all performance is evaluated by a measure of how
well it represents the underlying data (e.g., Pearson
correlation coefficient).

Symbolic regression30 is an alternative to this in
which—instead of the search space simply being co-
efficients to a preselected function—a search is done
on the space of possible functions. In this regime,
instead of the user selecting model to fit, the user
specifies the set of functions to search over. For ex-
ample, someone who is interested in an inherently
cyclical phenomenon might select C, A+B, A−B,

A÷B, A×B, sin(A), cos(A), exp(A),
√
A, and AB ,

where C is an arbitrary constant function, A and B
can either be terminal or non-terminal nodes in the
expression, and all functions are real valued.

Briefly, the search for a best fit regression model
becomes a genetic algorithm optimization problem:
(1) the correlation of an initial model is evaluated,
(2) the parse tree of the model is formed, (3) the
model is then mutated with random functions in ac-
cordance with an entropy parameter, (4) these mod-
els are then evaluated, (5) crossover rules are used
among the top performing models to form the next
generation of models.

What happens when we use such a regression
scheme to learn a function that maps one integer
to another, Z → Z? An expression, possibly more
compact than a LUT, can be arrived at that bears
no resemblance to the underlying data. Since no
attempt is made to perform regularization, given a
deep enough search, we can arrive at an expression
which exactly fits a LUT!

– — — – — — — — – — –

Please rise and open your hymnals to 13:06, in
which Evan Sultanik created a closet drama about
phone keypad mappings.

0

8
tuv

5
jkl

2
abc

1 3
def

4
ghi

6
mno

7
pqrs

9
wxyz

He used genetic algorithms to generate a new map-
ping that utilizes the 0 and 1 buttons to minimize
the potential for collisions in encoded six-digit En-
glish words. Please be seated.

30Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85,
2009.

47

What if we want to encode a keypad mapping in
an obfuscated way? Let’s represent each digit ac-
cording to its ASCII value and encode its keypad
mapping as the value of its button times ten plus its
position on the button.

Character Decimal ASCII Keypad Encoding
‘a’ 97 21
‘b’ 98 22
‘c’ 99 23
‘d’ 100 31
‘e’ 101 32
‘f’ 102 33
‘g’ 103 41
‘h’ 104 42
‘i’ 105 43
‘j’ 106 51
‘k’ 107 52
‘l’ 108 53
‘m’ 109 61
‘n’ 110 62
‘o’ 111 63
‘p’ 112 71
‘q’ 113 72
‘r’ 114 73
‘s’ 115 74
‘t’ 116 81
‘u’ 117 82
‘v’ 118 83
‘w’ 119 91
‘x’ 120 92
‘y’ 121 93
‘z’ 122 94

So, all we need to do is find a function encode
such that for each decimal ASCII value i and its
associated keypad encoding k : encode(i) 7→ k. Us-
ing a commercial-off-the-shelf solver called Eureqa
Desktop, we can find a floating point function that
exactly matches the mapping with a correlation co-
efficient of R = 1.0.

int encode(int i) {
return 0.020866*i*i+9*fmod(fmod(121.113,i),0.7617)-

162.5-1.965e-9*i*i*i*i*i;
}

So, for any lower-case character c, encode(c)÷ 10 is
the button number containing c, and encode(c) % 10
is its position on the button.

In the remainder of this article, we propose se-
lecting the following integer operations for fitting
discrete integer functions C, A + B, A − B, −A,
A÷B, A×B, A^B, A&B, A|B, A << B, A >> B,
A%B, and (A > B)?A : B, where the standard C99
definitions of those operators are used. With the
ability to create functions that fit integers to other
integers using integer operations, expressions can be
found that replace LUTs. This can either serve to

make code shorter or needlessly complicated, de-
pending on how the optimization is done and which
final algebraic simplifications are applied.

While there are readily available codes to do
symbolic regression, including commercial codes like
Eureqa, they only perform floating point evaluation
with floating point values. To remedy this tragic de-
ficiency, we modified an open source symbolic regres-
sion package written by Yurii Lahodiuk.31 The eval-
uation of the existing functions were converted to
integer arithmetic; additional functions were added;
print statements were reformatted to make them
valid C; the probability of generating a non-terminal
state was increased to perform deeper searches; and
search resets were added once the algorithm per-
formed 100 iterations with no improvement of the
convergence. This modified code is available in the
feelies.32

The result is that we can encode the phone key-
pad mapping in the following relatively succinct—
albeit deeply unintuitive—integer function.

int64_t encode(int64_t i) {
return ((((-7|2*i)^(i-61))/-48)^(((345/i)<<321)+

(-265%i)))+((3+i/-516)^(i+(-448/(i-62))));
}

This function encodes the LUT using only integer
constants and the integer functions ∗, /, <<, +, −,
|, ⊕, and %. It should also be noted that this code
uses the left bit-shift operator well past the bit size
of the datatype. Since this is an undefined behav-
ior and system dependent on the integer ALU’s im-
plementation, the code works with no optimization,
but produces incorrect results when compiled with
gcc and -O3; the large constant becomes 31 when
one inspects the resulting assembly code. There-
fore, the solution is not only customized for a given
data set; it is customized for the CPU and compiler
optimization level.

While this method presents a novel way of ob-
fuscating codes, it is a cautionary tale on how sus-
ceptible this method is to over-fitting in the absence
of regularization and model validation. Penalizing
overly complicated models, as the Eureqa solver did,
is no substitute. Don’t rely exclusively on symbolic
regression for finding general models of physical phe-
nomenon, especially from a limited number of obser-
vations!

31git clone https://github.com/lagodiuk/genetic-programming
32unzip pocorgtfo16.pdf SymbolicRegression/*

48

