
16:07 Extracting the Game Boy Advance BIOS ROM through the
Execution of Unmapped Thumb Instructions

by Maribel Hearn

Lately, I’ve been a bit obsessed with the Game
Boy Advance. The hardware is simpler than the
modern handhelds I’ve been playing with and the
CPU is of a familiar architecture (ARM7TDMI),
making it a rather fun toy for experimentation. The
hardware is rather well documented, especially by
Martin Korth’s GBATEK page.22 As the GBA
is a console where understanding what happens
at a cycle-level is important, I have been writing
small programs to test edge cases of the hardware
that I didn’t quite understand from reading alone.
One component where I wasn’t quite happy with
presently available documentation was the BIOS
ROM. Closer inspection of how the hardware be-
haves leads to a more detailed hypothesis of how the
ROM protection actually works, and testing this hy-
pothesis turns into the discovery a new method of
dumping the GBA BIOS.

Prior Work
Let us briefly review previously known techniques
for dumping the BIOS.

The earliest and probably the most well known
dumping method is using a software vulnerability
discovered by Dark Fader in software interrupt 1Fh.
This was originally intended for conversion of MIDI
information to playable frequencies. The first ar-
gument to the SWI a pointer for which bounds-
checking was not performed, allowing for arbitrary
memory access.

A more recent method of dumping the GBA
BIOS was developed by Vicki Pfau, who wrote an
article on the mGBA blog about it,23 making use of
the fact that you can directly jump to any arbitrary
address in the BIOS to jump. She also develops a
black-box version of the attack that does not require
knowledge of the address by deriving what it is at
runtime by clever use of interrupts.

But this article is about neither of the above.
This is a different method that does not utilize any
software vulnerabilities in the BIOS; in fact, it re-
quires neither knowledge of the contents of the BIOS
nor execution of any BIOS code.

BIOS Protection
The BIOS ROM is a piece of read-only memory that
sits at the beginning of the GBA’s address space. In
addition to being used for initialization, it also pro-
vides a handful of routines accessable by software
interrupts. It is rather small, sitting at 16 KiB in
size. Games running on the GBA are prevented from
reading the BIOS and only code running from the
BIOS itself can read the BIOS. Attempts to read the
BIOS from elsewhere results in only the last success-
fully fetched BIOS opcode, so the BIOS from the
game’s point of view is just a repeating stream of
garbage.

This naturally leads to the question: How does
the BIOS ROM actually protect itself from improper
access? The GBA has no memory management unit;
data and prefetch aborts are not a thing that hap-
pens. Looking at how emulators implement this

22http://problemkaputt.de/gbatek.htm
23https://mgba.io/2017/06/30/cracking-gba-bios/

39

+−−−−−−−−−−−−−−−−−+ \
2 00000000h | | |

| BIOS ROM (16 KiB) | > Yes , we ’ re i n t e r e s t e d in t h i s part
4 00003FFFh | | |

+−−−−−−−−−−−−−−−−−+ /
6 00004000h |Unmapped memory |

| |
8 01FFFFFFh| |

+−−−−−−−−−−−−−−−−−+
10 02000000h |EWRAM (256KiB) |

|On−board work RAM|
12 02FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
14 03000000h |IWRAM (32 KiB) |

|On−chip Work RAM |
16 03FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
18 04000000h |MMIO |

| |
20 040003FFh | |

+−−−−−−−−−−−−−−−−−+
22 04000400h | Mostly∗ |

| Unmapped Memory | ∗ : The I /O port 04000800h a lone i s mirrored
24 04FFFFFFh| | through t h i s reg ion , r epea t ing every 64KiB .

+−−−−−−−−−−−−−−−−−+ (04 xx0800h i s a mirror o f 04000800h .)
26 05000000h | Pa l e t t e RAM |

| (1 KiB) |
28 05FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
30 06000000h | Video RAM | ∗∗ : Although VRAM i s 96KiB = 64KiB + 32KiB ,

| (9 6 KiB) | i t i s mirrored ac r o s s memory in b locks o f
32 06FFFFFFh| Mirrored ∗∗ | 128KiB = 64Kib + 32Kib + 32Kib

+−−−−−−−−−−−−−−−−−+ The two 32 KiB b locks are mi r ro r s o f
34 07000000h | Object Att r ibute | each other .

| Memory (OAM) |
36 | (1 KiB) |

07FFFFFFh| Mirrored |
38 +−−−−−−−−−−−−−−−−−+

08000000h |Game Pak ROM |
40 | |

| Three mi r ro r s |
42 | with d i f f e r e n t |

| wait s t a t e s |
44 0DFFFFFFh| |

+−−−−−−−−−−−−−−−−−+
46 0E000000h |Game Pak SRAM |

| (Var iab le s i z e) |
48 | Mirrored |

0FFFFFFFh| |
50 +−−−−−−−−−−−−−−−−−+

10000000h |Unmapped memory |
52 | |

| |
54 FFFFFFFFh| | } Also t h i s part , but s p o i l e r s .

+−−−−−−−−−−−−−−−−−+
56

GBA Memory Map : Most memory r e g i on s are mirrored through each
58 r e s p e c t i v e memory reg ion , with the except ion o f

the BIOS ROM and MMIO Gaps in the memory map
60 are found a f t e r the BIOS ROM, MMIO, and at the

end o f the address space
62

Diagram based on in fo rmat ion from Martin Korth
64 http :// problemkaputt . de/ gbatek . htm

40

does not help as most emulators look at the CPU’s
program counter to determine if the current instruc-
tion is within or outside of the BIOS memory re-
gion and use this to allow or disallow access respec-
tively, but this can’t possibly be how the real BIOS
ROM actually determines a valid access as wiring up
the PC to the BIOS ROM chip would’ve been pro-
hibitively complex. Thus a simpler technique must
have been used.

A normal ARM7TDMI chip exposes a number
of signals to the memory system in order to access
memory. A full list of them are available in the
ARM7TDMI reference manual (page 3-3), but the
ones that interest us at the moment are nOPC and
A[31:0]. A[31:0] is a 32-bit value representing the
address that the CPU wants to read. nOPC is a sig-
nal that is 0 if the CPU is reading an instruction,
and is 1 if the CPU is reading data. From this, a
very simple scheme for protecting the BIOS ROM
could be devised: if nOPC is 0 and A[31:0] is within
the BIOS memory region, unlock the BIOS. other-
wise, if nOPC is 0 and A[31:0] is outside of the BIOS
memory region, lock the BIOS. nOPC of 1 has no ef-
fect on the current lock state. This serves to protect
the BIOS because the CPU only emits a nOPC=0 sig-
nal with A[31:0] being an address within the BIOS
only it is intending to execute instructions within
the BIOS. Thus only BIOS instructions have access
to the BIOS.

While the above is a guess of how the GBA ac-
tually does BIOS locking, it matches the observed
behaviour.

This answers our question on how the BIOS pro-
tects itself. But it leads to another: Are there any
edge-cases due to this behaviour that allow us to
easily dump the BIOS? It turns out the answer to
this question is yes.

A[31:0] falls within the BIOS when the CPU
intends to execute code within the BIOS. This does
not necessarily mean the code is actually has to be
executed, but there only has to be an intent by
the CPU to execute. The ARM7TDMI CPU is a
pipelined processor. In order to keep the pipeline
filled, the CPU accesses memory by prefetching two
instructions ahead of the instruction it is currently
executing. This results in an off-by-two error: While
BIOS sits at 0x00000000 to 0x00003FFF, instruc-
tions from two instruction widths ahread of this have
access to the BIOS! This corresponds to 0xFFFFFFF8
to 0x00003FF7 when in ARM mode, and 0xFFFF-

FFFC to 0x00003FFB when in Thumb mode.
Evidently this means that if you could place in-

structions at memory locations just before the ROM
you would have access to the BIOS with protection
disabled. Unfortunately there is no RAM backing
these memory locations (see GBA Memory Map).
This complicates this attack somewhat, and we need
to now talk about what happens with the CPU reads
unmapped memory.

Executing from Unmapped Memory

When the CPU reads unmapped memory, the value
it actually reads is the residual data remaining on
the bus left after the previous read, that is to say
it is an open-bus read.24 This makes it simple to
make it look like instructions exist at an unmapped
memory location: all we need to do is somehow get
it on the bus by ensuring it is the last thing to be
read from or written to the bus. Since the instruc-
tion prefetcher is often the last thing to read from
the bus, the value you read from the bus is often the
last prefetched instruction.

One thing to note is that since the bus is 32 bits
wide, we can either stuff one ARM instruction (1×32
bits) or two Thumb instructions (2×16 bits). Since
the first instruction of BIOS is going to be the reset
vector at 0x00000000, we have to do a memory read
followed by a return. Thus two Thumb instructions
it is.

Where we jump from is also important. Each
memory chip puts slightly different things on the
bus when a 16-bit read is requested. A table of what
each memory instruction places on the bus is shown
in Figure 1.

24Does this reliance on the parasitic capacitance of the bus make this more of a hardware attack? Who can say.

41

Values in Memory :
2 | $−2 | $−1 | $ | $+1 | $+2 | $+3 |

| 0x88 | 0x99 | 0xAA | 0xBB | 0xCC | 0xDD |
4

Data found on bus a f t e r CPU reque s t s 16−b i t read o f address $.
6 | Memory Region | Alignment | Value on bus |

| −−− | −−− | −−− |
8 | EWRAM | doesn ’ t matter | 0xBBAABBAA |

| IWRAM | $ % 4 == 0 | 0x????BBAA (∗) |
10 | | $ % 4 == 2 | 0xBBAA???? (∗) |

| Pa l e t t e RAM | doesn ’ t matter | 0xBBAABBAA |
12 | VRAM | doesn ’ t matter | 0xBBAABBAA |

| OAM | $ % 4 == 0 | 0xDDCCBBAA |
14 | | $ % 4 == 2 | 0xBBAA9988 |

| Game Pak ROM | doesn ’ t matter | 0xBBAABBAA |
16

(∗) IWRAM i s ra the r p e cu l i a r . The RAM chip wr i t e s to only h a l f o f
18 the bus . This means that h a l f o f the penult imate value on the bus

i s s t i l l v i s i b l e , here r ep re s en ted by ???? .

Figure 1. Data on the Bus

Since we want two different instructions to ex-
ecute, not two of the same, the above table imme-
diately eliminates all options other than OAM and
IWRAM. Of the two available options, I chose to
use IWRAM. This is because OAM is accessed by
the video hardware and thus is only available to the
CPU during VBlank and optionally HBlank – this
would unnecessarily complicate things.

All we need to do now is ensure that the penul-
timate memory access puts one Thumb instruction
on the bus and that the prefetcher puts the other
Thumb instruction on the bus, then immediately
jump to the unmapped memory location 0xFFFF-
FFFC. Which instruction is placed by what depends
on instruction alignment. I’ve arbitrarily decided to
put the final jump on a non-4-byte aligned address,
so the first instruction is placed on the bus via a STR
instruction and the latter is place four bytes after
our jump instruction so that the prefetcher reads it.
Note that the location to which the STR takes place
does not matter at all,25 all we’re interested in is
what happens to the bus.

By now you ought to see how the attack can
be assembled from the ability to execute data left
on the bus at any unmapped address, the ability to
place two 16-bit Thumb instructions in a single 32-
bit bus word, and carefully navigating the pipeline
to branch to avoid unmapped instruction and to un-
lock the BIOS ROM.

25Well, if you trash an MMIO register that’s your fault really.

42

Exploit Summary
Reading the locked BIOS ROM is performed by five
steps, which together allow us to fetch one 32-bit
word from the BIOS ROM.

1. We put two instructions onto the bus ldr
r0, [r0]; bx lr (0x47706800). As we are start-
ing from IWRAM, we use a store instruction as well
as the prefetcher to do this.

2. We jump to the invalid memory address
0xFFFFFFFC in Thumb mode.26 The CPU attempts
to read instructions from this address and instead
reads the instructions we’ve put on bus.

3. Before executing the instruction at 0xFFFF-
FFFC, the CPU prefetches two instructions ahead.
This results in a instruction read of 0x00000000
(0xFFFFFFFC + 2 * 2). This unlocks the BIOS.

4. Our ldr r0, [r0] instruction at 0xFFFFFFFC
executes, reading the unlocked memory.

5. Our bx lr instruction at 0xFFFFFFFE exe-
cutes, returning to our code.

Assembly

1 . thumb
. s e c t i o n . iwram

3 . func read_bios , read_bios
. g l oba l read_bios

5 . type read_bios , %func t i on
. ba l i gn 4

7 // u32 read_bios (u32 bios_address) :
read_bios :

9 l d r r1 , =0xFFFFFFFD
ld r r2 , =0x47706800

11 s t r r2 , [r1]
bx r1

13 bx l r
bx l r

15 . ba l i gn 4
. endfunc

17 . l t o r g

Where to store the dumped BIOS is left as an
exercise for the reader. One can choose to print the
BIOS to the screen and painstakingly retype it in,
byte by byte. An alternative and possibly more con-
venient method of storing the now-dumped BIOS -
should one have a flashcart — could be storing it to
Game Pak SRAM for later retrieval. One may also
choose to write to another device over SIO,27 which
requires a receiver program (appropriately named
recver) to be run on an attached computer.28 As an
added bonus this technique does not require a flash-
cart as one can load the program using the GBA’s
multiboot protocol over the same cable.

– — — – — — — — – — –
This exploit’s performance could be improved, as

ldr r0, [r0] is not the most efficient instruction
that can fit. ldm would retrieve more values per call.

Could this technique apply to the ROM from
other systems, or perhaps there is some other way
to abuse our two primitives: that of data remaining
on the bus for unmapped addresses and that of the
unexecuted instruction fetch unlocking the ROM?

Acknowledgments
Thanks to Martin Korth whose documentation of
the GBA proved invaluable to its understanding.
Thanks also to Vicki Pfau and to Byuu for their
GBA emulators which I often reference.

26This appears in the assembly as a branch to 0xFFFFFFFD because the least significant bit of the program counter controls
the mode. All Thumb instructions are odd, and all ARM instructions are even.

27unzip pocorgtfo16.pdf iodump.zip
28git clone https://github.com/MerryMage/gba-multiboot

43

In
st
ru
ct
io
n

C
yc
le
*

P
C

W
ha

t’
s
ha

pp
en
in
g

A[
31

:0
]

nO
PC

B
us

co
nt
en
ts

st
r

r2
,

[r
1]

1
re

ad
_b

io
s+

4
P
re
fe
tc
h
of

re
ad

_
bi
os
+
8

re
ad

_b
io

s+
8

0
[r

ea
d_

bi
os

+8
]

re
ad

2
re

ad
_b

io
s+

4
D
at
a
st
or
e
of

0x
68
00
68
00

0x
FF

FF
FF

FD
1

0x
68

00
68

00
w
ri
te

bx
r1

1
re

ad
_b

io
s+

8
P
re
fe
tc
h
of

re
ad

_
bi
os
+
10

re
ad

_b
io

s+
10

0
0x

47
70

68
00

re
ad

2
re

ad
_b

io
s+

8
P
ip
el
in
e
re
lo
ad

(0
x6

80
0
is

re
ad

in
to

pi
pe

lin
e)

0x
FF

FF
FF

FC
0

0x
47

70
68

00
re
ad

3
re

ad
_b

io
s+

8
P
ip
el
in
e
re
lo
ad

(0
x4

77
0
is

re
ad

in
to

pi
pe

lin
e)

0x
FF

FF
FF

FE
0

0x
47

70
68

00
re
ad

ld
r

r0
,

[r
0]

1
0x

FF
FF

FF
FC

P
re
fe
tc
h
of

0x
00
00
00
00

0x
00

00
00

00
0

[0
x0

00
00

00
0]

re
ad

2
0x

FF
FF

FF
FC

D
at
a
re
ad

of
[r
0]

r0
1

[r
0]

re
ad

bx
lr

1
0x

FF
FF

FF
FE

P
re
fe
tc
h
of

0x
00
00
00
02

0x
00

00
00

02
0

[0
x0

00
00

00
2]

re
ad

2
0x

FF
FF

FF
FE

P
ip
el
in
e
re
lo
ad

lr
0

[l
r]

re
ad

3
0x

FF
FF

FF
FE

P
ip
el
in
e
re
lo
ad

lr
+2

0
[l

r+
2]

re
ad

lr

F
ig
ur
e
2.

C
yc
le

C
ou

nt
s,

E
xc
lu
di
ng

W
ai
t
St
at
es

44

