
15:10 Windows Kernel Race Condition Analysis While Accessing
User-mode Data

by BSDaemon and NadavCh

In 2013, Google’s researchers Mateusz Jurczyk
(J00ru) and Gynvael Coldwind released a paper en-
titled “Identifying and Exploiting Windows Kernel
Race Conditions via Memory Access Patterns.”39
They discussed race conditions in the Windows ker-
nel while accessing user-mode data and demonstrate
how to find such conditions using an instrumented
emulator. More importantly, they offered a very
thorough explanation of how the identification of
such issues is possible, specifically listing these con-
ditions of interest:
1. At least two reads of the same virtual address;
2. Both read operations take place within a short

time frame. The authors specifically recom-
mend identifying reads in the handling of a
single kernel entrance;

3. The reads must execute in kernel mode;
4. The virtual address subject to multiple reads

must reside in memory writable by Ring-3
threads, in order for the user mode to be able
to take advantage of the race.

Interestingly most of these races are
exploitable—i.e., possible for the attacker to win—
on modern machines given multiple CPU cores.
The exceptions would be in memory areas that
are administrator-owned, or in situations that are
early boot—and thus not in a memory area that
can be mapped by an attacker. Even if the user-
mode area is only writable by administrator-owned
tasks, it might still be a problem given that it leads
to code execution in kernel mode that is prohib-
ited to the administrator and bypasses kernel driver
signing. Notably, the early boot cases are only non-
exploitable if they are not part of services prohibited
after boot.

We reproduced Google’s research using Intel’s
SAE40 and got some interesting results. This paper
explains our approach in the hope of helping others
understand the importance of documenting findings
and processes. It also demonstrates other findings
and clarifies the threat model for the Windows Ker-
nel, thanks to our discussions with the MSRC. We

share all the traces that generated double fetches for
Windows 8 (pre and post booting) and Windows 10
(again, pre and post boot).41

We also share our implementation: it contains
the parameters we used for our findings, the tracer,
and the analyzer—and can be used as reference to
audit other areas of the system. It also serves as a
good way to understand the instrumentation capa-
bilities of Simics and SAE, even though these are,
unfortunately, not open-source tools.

For the findings per se, almost all parameters ap-
pear to be probed and copied to local buffers inside
of try-except blocks. We flagged them as double-
fetches because some of the pointers are probed
first and then accessed to copy out actual data,
like PUNICODE_STRING->Buffer. One of them is
not inside a try-catch block and is a local DoS,
but we do not consider it a security issue, since it
is in administrator-owned memory. Many of them
are not related to Unicode strings and are poten-
tial escalations-of-privilege (see Figure 10), but once
again, for the threat model of the Windows Kernel,
administrator-initiated attacks are out of scope.

Microsoft nevertheless fixed some of the reported
issues. Obviously, mitigations in kernel mode might
still prevent or make exploiting some of those very
difficult.

Our findings concern three classes of issues:
Admin ↔ kernel cases: Microsoft did fix these, even
though their threat model does not consider this a
security issue. They may have considered the pos-
sibility of these cases used for a CSP bypass or a
sandbox bypass—even though we did not find cases
where a sandboxed process had administrator priv-
ileges.
Local DoS cases: These were also fixed, considering
that a symlink can be created by anyone and this
was a non-admin-only case.
Other cases: The rest of the cases do not appear to
be of consequence of security. We are sharing the
traces with the community, in case anyone is inter-
ested in double-checking :)

39Mateusz Jurczyk and Gynvael Coldwind, “Identifying and Exploiting Windows Kernel Race Conditions via Memory Access
Patterns,” Google, 2013. unzip pocorgtfo15.pdf bochspwn.pdf

40Nadav Chachmon et al., “Simulation and Analysis Engine for Scale-Out Workloads,” Proceedings of the 2016 International
Conference on Supercomputing (ICS ’16), Istanbul, Turkey; unzip pocorgtfo15.pdf chachmon.pdf

41git clone https://github.com/rrbranco/kdf ; unzip pocorgtfo15.pdf kdf.zip

82

Tool Description

We implemented a Kernel Double Fetch tool (KDF),
similar to the tool described in Identifying and Ex-
ploiting Windows Kernel Race Conditions via Mem-
ory Access Patterns.42 The tool has a runtime
phase, in which KDF candidates are identified, and
a post-runtime phase, in which these KDF candi-
dates are analyzed based on whether the fetches are
actually used by the kernel.

In the runtime phase, there is a ztool that looks
for system-call related instructions. When such an
instruction is triggered, the tool will dynamically
configure itself to enable memory access notifica-
tions and instruction execution notifications. When-
ever the kernel reads from the same user-space ad-
dress twice or more, the tool will generate a file that
describes the assembly instructions and the memory
access addresses. As an optimization, the tool ana-
lyzes each system call number only the first time it
is called; consecutive calls to the same system call
will not be analyzed. As correctly pointed out by
J00ru, though, this optimization can hinder the dis-
covery of some potential bugs that are only reached
under very specific conditions—and not during the
first invocation of the affected system call. The code
can be easily changed to address that concern.

After this work has completed, the KDF candi-
dates are filtered, and only if the kernel read the
memory twice or more and performed some opera-
tion based on the read, a violation will be reported.

We make the KDF ztool source code public.
You may get it from under <zsim-kit>/src/ztools
and open the Visual Studio solution. Make sure you
build an x64 version of the tool. (Look in the Vi-
sual Studio configuration.) After that you can load
the tool when you boot Win10. The tool generates
candidates for KDF in separate log file in the cur-
rent working directory. After completing the run of
the simulation you may use the kdf_analyzer. The
real KDF candidates will be located in the results
directory.

cd s r c / z t o o l s / kdf
python3 . 4 kdf_analyzer \

−id <zsim−s imics−workspace> \
− i f <kdf−v i o l a t i o n s−basename> \
−rd <r e s u l t s−d i r e c to ry>

Approach

The simulation tool is dependent on SAE, and runs
as a plugin to it. It works by loading the KDF
tool included in this paper, booting the OS, and
executing whatever test bench; the plugin will cap-
ture suspicious violations. After stopping the sim-
ulation, the KDF-analyzer scans the suspected vio-
lations recorded by the plugin and outputs the con-
firmed cases of double-fetches. Note that while these
are real double-fetches, they are not necessarily se-
curity issues.

The algorithm of the plugin works as follows. It
starts the analysis upon a SYSCALL instruction,
monitoring kernel reads from user addresses. It re-
ports a violation on two reads from the same user-
space address in the same instruction window. It
stops the KDF analysis after Instruction-Window is
reached in the same syscall scope, or upon a ring
transition.

Performance is guaranteed since each syscall is
instrumented only once and the instrumentation is
enabled only in the system call range, supported by
the tool itself.

The analyzer—responsible for post-analysis of
the potential violations—is a Python script that
manages the data flow dependencies. It adds a ref-
erence upon a copy from a suspected address to a
register/address. It removes the dependency refer-
ence upon a write to a previously referenced regis-
ter/memory, similar to a taint analysis. It reports
a violation only if two or more distinct kernel reads
happen from the same user-mode address.

We looked into the system call range 0–5081.
We dynamically executed 450 syscalls within that
range—meaning that our test bed is far from com-
pletely covering the entire range. The number of
suspected cases flagged by the plugin was 67 and
the number of violations identified was 8.

Interesting Cases

Figure 10 shows some of the interesting cases. The
Windows version was build number 10240, TH1
RTM candidate.

You will find traces extracted from our tests in
directories win10_after_boot/ and win8_after_-
boot/. As the names imply, they were collected af-
ter booting the respective Windows versions by just
using the system: opening calc, notepad, and the
recycle bin.

42http://research.google.com/pubs/pub42189.html

83

API Exploitable? Why?
nt!CmOpenKey No UNICODE_STRING, Read the Unicode structure and then read the

actual string. Both are properly probed.
nt!CmCreateKey No UNICODE_STRING
nt!SeCaptureObject-
AttributeSecurity-
DescriptorPresent
nt!SeCaptureSecurity-
Qos
nt!ObpCaptureObject-
CreateInformation

No Reading and then Checking if NULL. Getting length, probing, and
then copying data

nt!EtwpTraceMessageVa No Reading, checking against NULL, probing and then copying data
nt!NtCreateSymbolic-
LinkObject

No UNICODE_STRING, May lead to Local DOS. No try-catch on user
mode address reference, at least not at the top function; it may be
deeper in the call stack

win32kbase!bPEB-
CacheHandle

No Working on addresses of PEB structure and not on pointers, try-
catch will save in case of a malformed PEB

Figure 10. Interesting cases.

The filenames include the system call
number and the address of the occurrence,
to help identify the repeated cases, e.g.,
kdf-syscall-4101.log.data_flow_0x7ffe0320,
kdf-syscall-4104.log.data_flow_0x7ffe0320,
kdf-syscall-4105.log.data_flow_0x7ffe0320.
For example, the address 0x7ffe0320 repeats in
both Win10 and Win8 traces. We kept these re-
peated traces just to facilitate the analysis.

We also include the directories results_-
win10_boot/ and result_win8_boot/, which show
the traces of interest during the boot process. These
conditions are less likely to be exploitable, but some
addresses in them repeat post-boot as well.

The format of trace files is quite straightforward,
with comments inserted for events of interest:

−−START ANALYZING KDF, ADDRESS: 0 x2 f7406 f390
−− −> Def ines the address o f i n t e r e s t

Also included are the instructions performed
during the analysis/trace:

180 : 0 x f f f f f 8 0 3650a cdd4
mov rcx , qword ptr [rbx+0x10]

READ: VA = 0x2f7406f390 , LA = 0x2f7406f390 ,
PA1 = 0x79644390 , SIZE = 0x8 ,
DATA = 0 x0002 f746 f3 f 8

84

The KDF detection happens on the following
commentary on the trace:
−−Data−f l ow dependency o r i g i n a t ed from
−− l i n e 180 i s used : rcx

As you can see, the commentary includes the line
at which the data-flow dependency was marked.

Our detection process begins when a syscall in-
struction is issued. While inside the call, we analyze
kernel reads from the user address space, and re-
port whenever two reads hit the same address; how-
ever, we remove references if a write is issued to the
address. We stop the analysis once an instruction
threshold is hit, or a ring transition happens.

Future Work
Leveraging our method and the toolset should make
the following tasks possible.

First, it should be possible to find multiple writes
to the same user-mode memory area in the scope of
a single system service. This is effectively the oppo-
site of the current concept of a violation. This may
potentially find instances of accidentally disclosed
sensitive data, such as uninitialized pool bytes, for
a short while, before such data is replaced with the
actual system call result.

Second, it should be possible to trace execution
of code with CPL=0 from user-mode virtual address
space, a condition otherwise detected by the SMEP
mechanism introduced in the latest Intel processors.
Similarly, it should be possible to trace execution of
code from non-executable memory regions that are
not subject to Data-Execution-Prevention, such as
non-paged pools in Windows.

Third, KDF should be studied on more operat-
ing systems.

Last but not least, other cases of cross-privilege
mode double fetches should be investigated. There
is far more work left to be done in tracing access to
find these sorts of bugs.

Acknowledgments

We would like to thank Google researchers Mateusz
Jurczyk and Gynvael Coldwind for releasing an awe-
some paper on the subject with enough details to
reproduce their findings. (Mateusz was also kind
enough to give feedback on this paper.) MSRC for
helping to better define the threat model for Win-
dows Kernel Vulnerabilities, and for their collabo-
ration to triage the issues. We also thank Intel’s
Windows OS Team, specially Deepak Gupta and
Volodymyr Pikhur, for their help in the analysis of
the artifacts.

85

