
14:05 Anti-Keylogging with Random Noise
by Mike Myers

In PoC‖GTFO 12:7, we learned that malware is
inherently “drunk,” and we can exploit its inebria-
tion. This time, our entonnoir de gavage will be
filled with random keystrokes instead of single malt.

Gather ’round, neighbors, as we learn about the
mechanisms behind the various Windows user-mode
keylogging techniques employed by malware, and
then investigate a technique for thwarting them all.

Background
Let’s start with a primer on the data flow path of
keyboard input in Windows.

Figure 2 is a somewhat simplified diagram of the
path of a keystroke from the keyboard peripheral de-
vice (top left), into the Windows operating system
(left), and then into the active application (right).
In more detail, the sequence of steps is as follows:

1. The user presses down on a key.

2. The keyboard’s internal microcontroller con-
verts key-down activity to a device-specific “s-
can code,” and issues it to keyboard’s internal
USB device controller.

3. The keyboard’s internal USB device controller
communicates the scan-code as a USB message
to the USB host controller on the host system.
The scan code is held in a circular buffer in the
kernel.

4. The keyboard driver(s) converts the scan code
into a virtual key code. The virtual key code

is applied as a change to a real-time system-
wide data struct called the Async Key State
Array.

5. Windows OS process Csrcc.exe reads the in-
put as a virtual key code, wraps it in a Win-
dows “message,” and delivers it to the message
queue of the UI thread of the user-mode ap-
plication that has keyboard focus, along with
a time-of-message update to a per-thread data
struct called the Sync Key State Array.

6. The user application’s “message pump” is a
small loop that runs in its UI thread, retriev-
ing Windows messages with GetMessage(),
translating the virtual key codes into usable
characters with TranslateMessage(), and fi-
nally sending the input to the appropriate
callback function for a particular UI element
(also known as the “Window proc”) that actu-
ally does something with the input (displays a
character, moves the caret, etc.).

For more detail, official documentation of Windows
messages andWindows keyboard input can be found
in MSDN MS632586 and MS645530.

User-Mode Keylogging Techniques in
Malware

Malware that wants to intercept keyboard input
can attempt to do so at any point along this path.
However, for practical reasons input is usually in-
tercepted using hooks within an application, rather
than in the operating system kernel. The reasons
include: hooking in the kernel requires Adminis-
trator privilege (including, today, a way to meet
or circumvent the driver code-signing requirement);
hooking in the kernel before the keystroke reaches
the keyboard driver only obtains a keyboard device-
dependent “scan code” version of the keystroke,
rather than its actual character or key value; hook-
ing in the kernel after the keyboard driver but be-
fore the application obtains only a “virtual key code”
version of the keystroke (contextual with regard to
the keyboard “layout” or language of the OS); and
finally, hooking in the kernel means that the mal-
ware doesn’t know which application is receiving the
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Figure 2. Data flow of keyboard input in Windows.

keyboard input, because the OS has not yet dis-
patched the keystrokes to the active/focused appli-
cation. This is why, practically speaking, malware
only has a handful of locations where it can inter-
cept keyboard input: upon entering or leaving the
system message queue, or upon entering or leaving
the thread message queue.

Now that we know the hooking will likely be in
user-mode, we can learn about the methods to do
user-mode keystroke logging, which include:

• Hooking the Windows message functions
TranslateMessage(), GetMessage(), and
PeekMessage() to capture a copy of messages
as they are retrieved from the per-thread mes-
sage queue.

• Creating a Windows message hook
for the WH_KEYBOARD message using
SetWindowsHookEx().

• Similarly, creating a Windows mes-
sage hook for the so-called “LowLevel
Hook” (WH_KEYBOARD_LL) message with
SetWindowsHookEx().

• Similarly, creating a Windows message hook
for WH_JOURNALRECORD, in order to create a

Journal Record Hook. Note: this method has
been disabled since Windows Vista.

• Polling the system with GetAsyncKeyState().

• Similarly, polling the system with GetKey-
boardState() or GetKeyState().

• Similarly, polling the system with GetRawIn-
putData().

• Using DirectX to capture keyboard input
(somewhat lower-level method).

• Stealing clipboard contents using, e.g., Get-
ClipboardData().

• Stealing screenshots or enabling a remote
desktop view (multiple methods).

20



The following table lists some pieces of malware
and which method they use.

Malware Keylogging Technique
Zeus Hooks TranslateMessage(),

GetMessage(), PeekMessage(),
and GetClipboardData(); uses
GetKeyboardState().12

Sality GetMessage(), GetKeyState(),
PeekMessage(),
TranslateMessage(),
GetClipboardData().

SpyEye Hooks TranslateMessage(),
then uses GetKeyboardState().

Poison Ivy Polls GetKeyboardLayout(),
GetAsyncKeyState(),
GetClipboardData(), and uses
SetWindowsHookEx().

Gh0st RAT Uses SetWindowsHookEx() with
WH_GETMESSAGE, which is another
way to hook GetMessage().

Anti-Keylogging with Keystroke Noise

One approach to thwarting keyloggers that might
seem to have potential is: Insert so many phantom
keyboard devices into the system that the malware
cannot reliably select the actual keyboard device for
keylogging. However, based upon our new under-
standing of how common malware implements key-
logging, it is clear that this approach will not be
successful, because malware does not capture key-
board input by reading it directly from the device.
Malware is designed to intercept the input at a layer
high enough as to be input device agnostic. We need
a different technique.

Our idea is to generate random keyboard activity
“noise” emanating at a low layer and removed again
in a high layer, so that it ends up polluting a mal-
ware’s keylogger log, but does not actually interfere
at the level of the user’s experience. Our approach,
shown in Figure 3, is illustrated as a modification to
the previous diagram.

Technical Approach

What we have done is create a piece of dynamically
loadable code (currently a DLL) which, once loaded,
checks for the presence of User32.dll and hooks its

imported DispatchMessage() API. From the Dis-
patchMessage hook, our code is able to filter out
keystrokes immediately before they would otherwise
be dispatched to a Window Proc. In other words,
keystroke noise can be filtered here, at a point after
potential malware would have already logged it. The
next step is to inject the keystroke noise: our code
runs in a separate thread and uses the SendInput()
API to send random keystroke input that it gener-
ates. These keystrokes are sent into the keyboard
IO path at a point before the hooks typically used
by keylogging malware.

In order avoid sending keystroke noise that
will be delivered to a different application and
therefore not filtered, our code must also use the
SetWindowsHookEx() API to hook the Window-
Proc, in order to catch the messages that indi-
cate our application is the one with keyboard focus.
WM_SETFOCUS and WM_KILLFOCUS messages indicate
gaining or losing keyboard input focus. We can’t
catch these messages in our DispatchMessage()
hook because, unlike keyboard, mouse, paint, and
timer messages, the focus messages are not posted to
the message queue. Instead they are sent directly to
WindowProc. By coordinating the focus gained/lost
events with the sending of keystroke noise, we pre-
vent the noise from “leaking” out to other applica-
tions.

Related Research

In researching our concept, we found some prior art
in the form of a European academic paper titled
NoisyKey.13 They did not release their implemen-
tation, though, and were much more focused on a
statistical analysis of the randomness of keys in the
generated noise than in the noise channel technique
itself. In fact, we encountered several technical ob-
stacles never mentioned in their paper. We also dis-
covered a commercial product called KeystrokeIn-
terference. The trial version of KeystrokeInterfer-
ence definitely defeated the keylogging methods we
tested it against, but it did not appear to actually
create dummy keystrokes. It seemed to simply cause
keyloggers to gather incomplete data—depending on
the method, they would either get nothing at all,
only the Enter key, only punctuation, or they would
get all of the keystroke events but only the letter “A”
for all of them. Thus, KeystrokeInterference doesn’t

12Zeus’s keylogging takes place only in the browser process, and only when Zeus detects a URL of interest. It is highly
contextual and configured by the attacker.

13NoisyKey: Tolerating Keyloggers via Keystrokes Hiding by Ortolani and Crispo, Usenix Hotsec 2012
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Figure 3. A noise generating anti-keylogger plugged into the Windows keyboard data flow.

obfuscate the typing dynamics, and it appears to
have a fundamentally different approach than we
took. (It is not documented anywhere what that
method actually is.)

Challenges

For keystroke noise to be effective as interference
against a keylogger, the generated noise should be
indistinguishable from user input. Three considera-
tions to make are the rate of the noise input, emulat-
ing the real user’s typing dynamics, and generating
the right mix of keystrokes in the noise.

Rate is fairly simple: the keystroke noise just has
to be generated at a high enough rate that it well
outnumbers the rate of keys actually typed by the
user. Assuming an expert typist who might type at
80 WPM, a rough estimate is that our noise should
be generated at a rate of at least several times that.
We estimated that about 400 keystrokes per minute,
or about six per second, should create a high enough
noise to signal ratio that it is effectively impossible
to discern which keys were typed. The goal here
is to make sure that random noise keys separate all
typed characters sufficiently that no strings of typed

characters would appear together in a log.
Addressing the issue of keystroke dynamics is

more complicated. Keystroke dynamics is a term
that refers to the ability to identify a user or what
they are typing based only on the rhythms of key-
board activity, without actually capturing the con-
tent of what they are typing. By flooding the in-
put with random noise, we should break keystroke
rhythm analysis of this kind, but only if the in-
jected keystrokes have a random rhythm about them
as well. If the injected keystrokes have their own
rhythm that can be distinguished, then an attacker
could theoretically learn to filter the noise out that
way. We address this issue by inserting a random
short delay before every injected keystroke. The
random delay interval has an upper bound but no
lower bound. The delay magnitude here is related
to the rate of input described previously, but the
randomness within a small range should mean that
it is difficult or impossible to distinguish real from
injected keystrokes based on intra-keystroke timing
analysis.

Another challenge was detecting when our appli-
cation had (keyboard) input focus. It is non-trivial
for a Windows application to determine when its
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window area has been given input focus: although
there are polling-based Windows APIs that can pos-
sibly indicate which Window is in the foreground
(GetActiveWindow, GetForegroundWindow), they
are not efficient nor sufficient for our purposes.
The best solution we have at the moment is that
we installed a “Window Proc” hook to monitor for
WM_SETFOCUS and other such messages. We also
found it best to temporarily disable the keystroke
noise generation while the user was click-dragging
the window, because real keyboard input is not
simultaneously possible with dragging movements.
There are likely many other activation and focus
states that we have not yet considered, and which
will only be discovered through extensive testing.

Lastly, we had to address the need to gener-
ate keystroke noise that included all or most of
the keys that a user would actually strike, includ-
ing punctuation, some symbols, and capital letters.
This is where we encountered the difficulty with the
Shift key modifier. In order to create most non-
alphanumeric keystrokes (and to create any capital
letters, obviously), the Shift key needs to be held in
concert with another key. This means that in order
to generate such a character, we need to generate a
Shift key down event, then the other required key
down and up events, then a Shift key up event. The
problem lies in the fact that the system reacts to our
injected shift even if we filter it out: it will change
the capitalization of the user’s actual keystrokes.
Conversely, the user’s use of the Shift key will change
the capitalization of the injected keys, and our filter
routine will to fail recognize them as the ones we
recently injected, allowing them through instead.

The first solution we attempted was to track ev-
ery time the user hit the Shift key and every time
we injected a Shift keystroke, and deconflict their
states when doing our filter evaluation. Unfortu-
nately, this approach was prone to failure. Subtle
race conditions between Async Key State (“true” or
“system” key state, which is the basis of the Shift
key state’s affect on character capitalization) and
Sync Key State (“per-thread” key state, which is ef-
fectively what we tracked in our filter) were difficult
to debug. We also discovered that it is not possi-
ble to directly set and clear the Shift state of the
Async Key State table using an API like SetKey-
boardStateTable().

We considered using BlockInput() to ignore the
user’s keyboard input while we generated our own,
in order to resolve a Shift state confusion. How-
ever, in practice, this API can only be called from a
High Integrity Level process (as of Windows Vista),
making it impractical. It would probably also cause
noticeable problems with keyboard responsiveness.
It would not be acceptable as a solution.

Ultimately, the solution we found was to rely
on a documented feature of SendInput() that will
guarantee non-interleaving of inputs. Instead of call-
ing SendInput() four times (Shift down, key down,
key up, Shift up) with random delays in between, we
would instead create an array of all four key events
and call SendInput once. SendInput() then ensures
that there are no other user inputs that intermingle
with your injected inputs, when performed this way.
Additionally, we use GetAsyncKeyState() immedi-
ately before SendInput in order to track the actual
Shift state; if Shift were being held down by the
user, we would not also inject an interfering Shift
key down/up sequence. Together, these precautions
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solved the issue with conflicting Shift states. How-
ever, this has the downside of taking away our ability
to model a user’s key-down-to-up rhythms using the
random delays between those events as we originally
intended.

Once we had made the change to our use of
SendInput(), we noticed that these injected noise
keys were no longer being picked up by certain meth-
ods of keylogging! Either they would completely not
see the keystroke noise when injected this way, or
they saw some of the noise, but not enough for it
to be effective anymore. What we determined was
happening is that certain keylogging methods are
based on polling for keyboard state changes, and
if activity (both a key down and its corresponding
key up) happens in between two subsequent polls, it
will be missed by the keylogger. When using Send-
Input to instantaneously send a shifted key, all four
key events (Shift key down, key down, key up, Shift
key up) pass through the keyboard IO path in less
time than a keylogger using a polling method can
detect (at practical polling rates) even though it is
fast enough to pick up input typed by a human.
Clearly this will not work for our approach. Unfor-
tunately, there is no support for managing the rate
or delay used by SendInput; if you want a key to
be “held” for a given amount of time, you have to
call SendInput twice with a wait in between. This
returns us to the problem of user input being inter-
leaved with our use of the Shift key.

Figure 4. CPU and RAM usage of the PoC
keystroke noise generator.

Our compromise solution was to put back our
multiple SendInput() calls separated by delays, but
only for keys that didn’t need Shift. For keys that
need Shift to be held, we use the single SendInput()
call method that doesn’t interleave the input with
user input, but which also usually misses being
picked up by polling-based keyloggers. To account
for the fact that polling-based keyloggers would re-
ceive mostly only the slower unshifted key noise that
we generate, we increased the noise amount propor-
tionately. This hybrid approach also enables us to
somewhat model keystroke dynamics, at least for
the unshifted keystrokes whose timing we can con-
trol.

PoC Results

Our keystroke noise implementation produces suc-
cessful results as tested against multiple user-mode
keylogging methods.

Input-stealing methods that do not involve key-
logging (such as screenshots and remote desktop) are
not addressed by our approach. Fortunately, these
are far less attractive methods to attackers: they
are high-bandwidth and less effective in capturing
all input. We also did not address kernel-mode key-
logging techniques with our approach, but these too
are uncommon in practical malware, as explained
earlier.

Because the keystroke noise technique is an ac-
tive technique (as opposed to a passive configuration
change), it was important to test the CPU overhead
incurred. As seen in Figure 4, the CPU overhead is
incredibly minimal: it is less than 0.3% of one core of
our test VM running on an early 2011 laptop with
a second generation 2GHz Intel Core i7. Some of
that CPU usage is due to the GUI of the demo app
itself. The RAM overhead is similarly minimal; but
again, what is pictured is mostly due to the demo
app GUI.
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Conclusions
Although real-time keyboard input is effectively
masked from keyloggers by our approach, we did not
address clipboard-stealing malware. If a user were to
copy and paste sensitive information or credentials,
our current approach would not disrupt malware’s
ability to capture that information. Similarly, an
attacker could take a brute-force approach of cap-
turing what the user sees, and grab keyboard input
that way (screenshotting or even a live remote desk-
top session). For approaches like these, there are
other techniques that one could use. Perhaps they
would be similar to the keystroke noise concept (e.g.,
introduce noise into the display output channel, fil-
ter it out at a point after malware tries to grab it),
but that is research that remains to be done.

Console-mode applications don’t rely on Win-
dows messages, and as such, our method is not yet
compatible with them. Console mode applications
retrieve keyboard input differently, for example us-
ing the kbhit() and getkey() APIs. Likewise, any
Windows application that checks for keyboard input
without any use of Windows Messages (rare, but
theoretically possible), for example by just polling
GetKeyboardState(), is also not yet compatible
with our approach. There is nothing fundamentally
incompatible; we would just need to instrument a
different set of locations in the input path in order
to filter out injected keyboard input before it is ob-
served by console-mode applications or “abnormal”
keyboard state checking of this sort.

Another area for further development is in the
behavior of SendInput(). If we reverse engineer the
SendInput API, we may be able to reimplement it
in a way specifically suited for our task. Specifically
we would like the timing between batched input
elements to be controllable, while maintaining the
input interleaving protection that it provides when
called using batched input.

We discovered during research that a “low-
level keyboard hook” (SetWindowsHookEx() with
WH_KEYBOARD_LL) can check a flag on each call-
back called LLKHF_INJECTED, and know if the
keystroke was injected in software, e.g., by a call
to SendInput(). So in the future we would
also seek a way to prevent win32k.sys from set-
ting the LLKHF_INJECTED flag on our injected
keystrokes. This flag is set in the kernel by
win32k.sys!XxxKeyEvent, implying that it may re-
quire kernel-level code to alter this behavior. Al-

though this would seem to be a clear way to de-
feat our approach, it may not be so. Although we
have not tested it, any on-screen keyboard or re-
motely logged-on user’s key inputs supposedly come
through the system with this flag set, so a keylogger
may not want to filter on this flag. Once we pro-
pose loading kernel code to change a flag, though,
we may as well change our method of injecting input
and just avoid this problem entirely. By so doing we
could also likely address the problem of kernel-mode
keyloggers.
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