
14:04 Flush+Reload
by Taylor Hornby

Dear Editors and Readers of PoC‖GTFO,

You’ve been lied to about how your computer
works. You see, in a programming class they teach
you just enough for you to get on with your job and
no more. What you learn is a mere abstraction of the
very complicated piece of physics sitting under your
desk. To use your computer to its fullest potential,
you must forget the familiar abstraction and finally
see your computer for what it really is. Come with
me, as we take a small step towards enlightenment.

You know what makes a computer—or so you
think. There is a processor. There is a bank of main
memory, which the processor reads, writes, and ex-
ecutes from. And there are processes, those entities
that from time to time get loaded into the processor
to do their work.

As we know, processes shouldn’t be trusted to
play well together, and need to be kept separate.
Many of the processor’s features were added to keep
those processes isolated. It would be quite bad if
one process could talk to another without the sys-
tem administrator’s permission.

We also know that the faster a computer is, the
more work it can do and the more useful it is. Even
more features were introduced to the processor in
order to make it go as fast as possible.

Accordingly, your processor most likely has a
memory cache sitting between main memory and
the processor, remembering recently-read data and
code, so that the next time the processor reads from
the same address, it doesn’t have to reach all the
way out to main memory. The vendors will say this
feature was added to make the processor go faster,
and it does do a great job of that. But I will show
you that the cache is also a feature to help hack-
ers get around those annoying access controls that
system administrators seem to love.

What I’m going to do is show you how to send
a text message from one process to the other, using
only memory reads. What!? How could this be pos-
sible? According to your programming class, you
say, reads from memory are just reads, they can’t
be used to send messages!

The gist is this: the cache remembers recently
executed code, which means that it must also re-
member which code was recently executed. Pro-
cesses are in control of the code they execute, so
what we can do is execute a special pattern of code
that the cache will remember. When the second
process gets a chance to run, it will read the pattern
out of the cache and recover the message. Oh how
thoughtful it was of the processor designers to add
this feature!

The undocumented feature we’ll be using is
called “Flush+Reload,” and it was originally discov-
ered by Yuval Yarom and Katrina Falkner.9 It’s
available in most modern Intel processors, so if
you’ve got one of those, you should be able to follow
along.

9Usenix Security 2014

14

It works like this. When Sally the Sender pro-
cess gets loaded into memory, one copy of all her ex-
ecuted code gets loaded into main memory. When
Robert the Receiver process loads Sally’s binary into
his address space, the operating system isn’t going
to load a second copy: that would be wasteful. In-
stead, it’s just going to point Robert’s page tables
at Sally’s memory. If Sally and Robert could both
write to the memory, it would be a huge problem
since they could simply talk by writing messages to
each other in the shared memory. But that isn’t a
problem, because one of those processor security fea-
tures stops both Sally and Robert from being able
to write to the memory. How do they communicate
then?

When Sally the Sender executes some of her
code, the cache—the last-level cache, to be specific—
is going to remember her most recently executed
code. When Robert the Receiver reads a chunk of
code in Sally’s binary, the read operation is going to
be sent through the very same cache. So: if Sally
ran the code not too long ago, Robert’s read will
happen very fast. If Sally hasn’t run the code in a
while, Robert’s read is going to be slow.

Sally and Robert are going to agree ahead of time
on 27 locations in Sally’s binary. That’s one location
for each letter of the alphabet, and one left over for
the space character. To send a message to Robert,
Sally is going to spell out the message by executing
the code at the location for the letter she wants to
send. Robert is going to continually read from all 27
locations in a loop, and when one of them happens
faster than usual, he’ll know that’s a letter Sally just
sent.

Figure 1 contains the source code for Sally’s bi-
nary. Notice that it doesn’t even explicitly make
any system calls.

This program takes a message to send on the
command-line and simply passes the processor’s
thread of execution over the probe site correspond-
ing to that character. To have Sally send the
message “THE QUICK BROWN FOX JUMPS OVER THE
LAZY DOG” we just compile it without optimizations,
then run it.

But how does Robert receive the message?
Robert runs the program whose source code is at
flush-reload/myversion. The key to that pro-
gram is this bit of code, which times how long it
takes to read from an address, and then flushes it
from the cache.

1 __attribute__ ((a lways_in l ine))
i n l i n e unsigned long probe (char ∗ adrs) {

3 volat i le unsigned long time ;

5 asm __volatile__ (
" mfence \n"

7 " l f e n c e \n"
" rd t s c \n"

9 " l f e n c e \n"
" movl %%eax , %%e s i \n"

11 " movl (%1) , %%eax \n"
" l f e n c e \n"

13 " rd t s c \n"
" sub l %%es i , %%eax \n"

15 " c l f l u s h 0(%1) \n"
: "=a" (time)

17 : "c" (adrs)
: "%e s i " , "%edx") ;

19 return time ;
}

By repeatedly running this code on those special
probe sites in Sally’s binary, Robert will see which
letters Sally is sending. Robert just needs to know
where those probe sites are. It’s a matter of filter-
ing the output of objdump to find those addresses,
which can be done with this handy script:

#!/ bin /bash
2 for l e t t e r in {A . . Z}

do
4 addr=$ (objdump −D −M i n t e l msg | \

sed −n −e "/<$ l e t t e r >/,\$p" | \
6 grep c a l l | head −n 1 | \

cut −d ’ : ’ −f 1 | t r −d ’ ’) ;
8 echo −n "−p $ l e t t e r : 0 x$addr "

done
10 addr=$ (objdump −D −M i n t e l msg | \

sed −n −e "/<SP>/,\$p" | \
12 grep c a l l | head −n 1 | \

cut −d ’ : ’ −f 1 | t r −d ’ ’) ;
14 echo "−p _:0 x$addr"

Assuming this script works, it will output a list of
command-line arguments for the receiver, enumerat-
ing which addresses to watch for getting entered into
the cache:

−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5
2 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15

−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45
4 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75

−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5
6 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5

−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05
8 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35

−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

16

1 /∗ msg . c − Send a message through the Flush+Reload cache side−channel .
∗ Written Taylor Hornby for PoC | |GTFO 0x14 .

3 ∗/

5 // We surround the probe s i t e s with padding . This makes sure they ’ re in
// d i f f e r e n t page frames which reduces noise from pre fe tch ing , e tc .

7 unsigned int padding = 0 ;
#define PADDING_A padding += 1 ;

9 #define PADDING_B PADDING_A PADDING_A
#define PADDING_C PADDING_B PADDING_B

11 #define PADDING_D PADDING_C PADDING_C
#define PADDING_E PADDING_D PADDING_D

13 #define PADDING_F PADDING_E PADDING_E
#define PADDING_G PADDING_F PADDING_F

15 #define PADDING_H PADDING_G PADDING_G
#define PADDING_I PADDING_H PADDING_H

17 #define PADDING_J PADDING_I PADDING_I
#define PADDING_K PADDING_J PADDING_J

19 #define PADDING PADDING_K PADDING_K

21 // The probe s i t e s w i l l be c a l l i n s t r u c t i on s to t h i s empty funct ion . I t
// doesn ’ t have to be a c a l l i n s t r u c t i on ; i t ’ s j u s t easy to grep for .

23 void nu l l () { }
#define PROBE nu l l () ;

25
// One probe s i t e for each l e t t e r o f the a lphabe t and space .

27 void A() { PADDING PROBE PADDING } void B() { PADDING PROBE PADDING }
void C() { PADDING PROBE PADDING } void D() { PADDING PROBE PADDING }

29 void E() { PADDING PROBE PADDING } void F() { PADDING PROBE PADDING }
void G() { PADDING PROBE PADDING } void H() { PADDING PROBE PADDING }

31 void I () { PADDING PROBE PADDING } void J () { PADDING PROBE PADDING }
void K() { PADDING PROBE PADDING } void L() { PADDING PROBE PADDING }

33 void M() { PADDING PROBE PADDING } void N() { PADDING PROBE PADDING }
void O() { PADDING PROBE PADDING } void P() { PADDING PROBE PADDING }

35 void Q() { PADDING PROBE PADDING } void R() { PADDING PROBE PADDING }
void S () { PADDING PROBE PADDING } void T() { PADDING PROBE PADDING }

37 void U() { PADDING PROBE PADDING } void V() { PADDING PROBE PADDING }
void W() { PADDING PROBE PADDING } void X() { PADDING PROBE PADDING }

39 void Y() { PADDING PROBE PADDING } void Z() { PADDING PROBE PADDING }
void SP() { PADDING PROBE PADDING }

41
int main (int argc , char ∗∗argv) {

43 char ∗p ;
char l owercase ;

45
i f (argc != 2)

47 return 1 ;

49 for (p = argv [1] ; ∗p != 0 ; ++p) {
// Execute the probe corresponding to the l e t t e r to send .

51 lowercase = ∗p | 32 ;
switch (lowercase) {

53 case ’ a ’ : A() ; break ; case ’b ’ : B() ; break ;
case ’ c ’ : C() ; break ; case ’d ’ : D() ; break ;

55 case ’ e ’ : E() ; break ; case ’ f ’ : F() ; break ;
case ’ g ’ : G() ; break ; case ’h ’ : H() ; break ;

57 case ’ i ’ : I () ; break ; case ’ j ’ : J () ; break ;
case ’ k ’ : K() ; break ; case ’ l ’ : L () ; break ;

59 case ’m’ : M() ; break ; case ’n ’ : N() ; break ;
case ’ o ’ : O() ; break ; case ’p ’ : P() ; break ;

61 case ’ q ’ : Q() ; break ; case ’ r ’ : R() ; break ;
case ’ s ’ : S () ; break ; case ’ t ’ : T() ; break ;

63 case ’u ’ : U() ; break ; case ’ v ’ : V() ; break ;
case ’w ’ : W() ; break ; case ’ x ’ : X() ; break ;

65 case ’ y ’ : Y() ; break ; case ’ z ’ : Z () ; break ;
case ’ ’ : SP() ; break ;

67 }
}

69
return 0 ;

71 }

Figure 1. Sally’s Executable

17

The letter before the colon is the name of the
probe site, followed by the address to watch after
the colon. With those addresses, Robert can run
the tool and receive Sally’s messages.

1 $. / spy −e . /msg −t 120 −s 20000 \
−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5 \

3 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15 \
−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45 \

5 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75 \
−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5 \

7 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5 \
−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05 \

9 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35 \
−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

The -e option is the path to Sally’s binary,
which must be exactly the same path as Sally ex-
ecutes. The -t parameter is the threshold that de-
cides what’s a fast access or not. If the memory read
is faster than that many clock cycles, it will be con-
sidered fast, which is to say that it’s in the cache.
The -s option is how often in clock cycles to check
all of the probes.

With Robert now listening for Sally’s messages,
Sally can run this command in another terminal as
another user to transmit her message.

$. /msg "The quick brown fox jumps over the
lazy dog"

1 WARNING: This p ro c e s s o r does not have an
inva r i an t TSC.

Detected ELF type : Executable .
3 T|H|E|_|Q|U| I |C|K|_|_|B|B|R|O|W|N|_|F |O|X|_|

J |U|M|P| S |_|O|V|E|R|_|T|H|E|_|L |A|Z |Y|_|
D|O|G|

There’s a bit of noise in the signal (note the repli-
cated B’s), but it works! Don’t take my word for it,
try it for yourself! It’s an eerie feeling to see one
process send a message to another even though all
they’re doing is reading from memory.

Now you see what the cache really is. Not only
does it make your computer go faster, it also has this
handy feature that lets you send messages between
processes without having to go through a system
call. You’re one step closer to enlightenment.

– — — – — — — — – — –
This is just the beginning. You’ll find a collec-

tion of tools and experiments that go much further
than this.10 The attacks there use Flush+Reload to
find out which PDF file you’ve opened, which web
pages you’re visiting, and more.

I leave two open challenges to you fine readers:
1. Make the message-sending tool reliable, so

that it doesn’t mangle messages even a little bit.
Even cooler would be to make it a two-way reliable
chat.

2. Extend the PDF-distinguishing attack in my
poppler experiment11 to determine which page of
pocorgtfo14.pdf is being viewed. As I’m reading
this issue of PoC‖GTFO, I want you to be able to
tell which page I’m looking at through the side chan-
nel.

Best of luck!
—Taylor Hornby

10git clone https://github.com/defuse/flush-reload-attacks
11experiments/poppler

18

