
9 A VIM Execution Engine
by Chris Domas

The power of vim is known far and wide, yet it is
only when we push the venerable editor to its limits
that we truly see its beauty. To conclusively demon-
strate vim’s majesty, and silence heretical doubters,
let us construct a copy/paste/search/replace Turing
machine, using vanilla vim commands.

First, we lay some ground rules. Naturally, we
could build a Turing machine using the built-in vim-
script, but it is already known that vimscript is
Turing-complete, and this is hardly sporting. vim
ex commands (the requests we make from vim when
we type a colon) are abundant and powerful, but
these too would make the task simple, and therefore
would fail to illustrate the glory of vim. Instead, we
strive to limit ourselves to normal vim commands -
yank, put, delete, search, and the like.

With these constraints in mind, we must decide
on the design of our machine. For simplicity, let
us implement an interpreter for the widely known
BrainFuck (BF) programming language. Our ma-
chine will be a simple text file that, when opened
in vim and started with a few key presses, inter-
prets BF code through copy/paste/search/replace
style vim commands.

Let us begin by giving our machine some mem-
ory. We create data tape in the text file by simply
adding the following:

_t :
2 0 0 0 0 0 0 0 0 0 0

We now have ten data cells, which we can locate
by searching for _t.

Now what of the BF code itself? Let us add a
Fibonacci number generator to the file:

_p:
2 >++++++++++ >+ >+[[+++++[>++++++++

<-]>.<++++++[>--------<-]+<<<]>.
4 >>[[-]<[>+<-]>>[<<+>+>-]<[>+<-[>

+<-[>+<-[>+<-[>+<-[>+<-[>+<-[>+<
6 -[>+<-[>[-]>+>+<<<-[>+<-]]]]]]]]

]]]+>>>]<<<]

Progress! Now we add lines to accommodate in-
put and output, although these will be left empty
for now:

1 _i :

3 _o :

To perform output, our program will need to
convert the numeric memory cells to ASCII values.
This can easily be done by adding an ASCII lookup
table to our program:

1 _a :
. . . __65 A__66 B__67 C__68 D . . . _127 ._uuu

.

The arrangement of underscores and spaces will
assist us in navigating the table with vim com-
mands. Providing an “unknown” uuu allows us to
process values outside the ASCII range.

Now for the fun part—how do we execute our
BF program using just our simple vim commands?
We would envision a small set of commands running
continuously to interpret the program. Of course,
we could manually type out these commands our-
selves, over and over, to perform the execution (and
we indeed encourage this as an enjoyable exercise!),
but in the unfortunate situation in which an inter-
preted program fails to halt, we may come to find
this process laborious. Instead, we will insert the
keys for these commands directly into our vim file.
When complete, we can automatically run the com-
mands on the first line of the file by typing:

ggyy@"

If the first line, in turn, moves to other lines,
and repeats this process of yanking a line of com-
mands (yy) and executing the yanked buffer (@"),
execution can continue indefinitely, without any ad-
ditional user action.

72

So to begin, let us simplify the process of navi-
gating the text file by setting marks at key points.
At the start of our text file, we add commands to
set a mark at the beginning of the file:

1 gg0mh

A mark at the memory tape:

1 /_t^Mnjmt ‘ h

A mark at the BF code:

1 /_p^Mnjmp‘ h

A mark at the input, output, and ASCII table:

1 /_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_a^Mnjma ‘ h

Although these steps are not strictly necessary,
they will simplify navigating the file for future com-
mands.

Now for execution! BF contains 8 instructions:
increment the current data cell (+), decrement the
current data cell (-), move to the next data cell (>),
move to the previous data cell (<), a conditional
jump forward ([), a conditional jump backward (]),
output the current data cell (.), and input to the
current data cell (,). Let us construct a table of
vim commands to carry out each of these opera-
tions; each label will act as a marker for looking up
the corresponding commands:

1 _c :
_>−???X

3 _<−???X
_[−???X

5 _]−???X
_+−???X

7 _−−???X
_.−???X

9 _,−???X
f :???X

11 _b:_???X

We again apply the trick of special charac-
ters around each operation to simplify the search
process—we may find many >’s in our file, but there
will be only one _>-. We mark the end of the com-
mand with an X. We preemptively supply additional
_f and _b commands, to carry out the conditional

part of the BF branch operations [and]. We will
determine the exact commands for each momentar-
ily, which will replace the unknown ??? above. For
now, let us continue the previous process of adding
marks to each for quick navigation.

1 /_c^Mnjma ‘ h/_c^Mnf_mf ‘ h/_b^Mnf_mb

Now that our marks are set, we add to the top of
our file the commands to execute the first instruc-
tion in the BF program:

1 ‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"

This will move to the BF program (‘p), yank one
BF instruction (yl), move to the command table (‘c),
find the BF instruction in the table, (/_\V^R"^M)
move to the list of commands for that instruction
(f-l), yank the list of commands (y2tX)—skipping
an X embedded in the command, and seeking for-
ward to the terminating X—and execute the yanked
commands (@"). With this, our execution begins!

Let’s now complete our table by determining the
commands to execute each BF instruction. > and <
are particularly simple. For >:

1 ‘ twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Plainly, this is: move to the memory tape (‘t),
move forward one memory cell (w), mark the new
location in the tape (mt), move back to the BF pro-
gram (‘p), move forward one character to progress
over the now executed BF instruction (), mark the
new location in the BF program (mp), yank the next
BF instruction (yl), and follow the previous process
(‘c/_\V^R"^Mf-ly2tX@") to locate that instruction
in the command table, yank its commands, and ex-
ecute them.

<, then, is similarly implemented as:

1 ‘ tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

What of + and -? + can be performed with:

1 ‘ t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

73

This is virtually identical to the < and > imple-
mentation. This time, we move to the current data
cell and increment it with ˆ A. Strictly speaking, this
is a violation of the copy/paste/search/replace type
execution we have been using. However, with mini-
mal effort, the increment could be performed via a
lookup table (as we do for the ASCII conversion)—
we simply elide this for brevity.

Simply replacing ˆ A (increment) with ˆ X
(decrement), - is derived:

1 ‘ t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Now, certainly, our interpreter is not useful with-
out input and output, so let us add . and , com-
mands. . may be

1 ‘ tyw ‘ a/_\(^R" \ | uuu\)^Mel ly l ‘ op$mo ‘ p mpyl ‘ c/_
\V^R"^Mf−ly2tX@"

This of course is: move to the memory tape
(‘t), yank a cell (yw), move to the ASCII table (‘a),
search for the yanked cell or, if it is not found, move
to the uuumarker, (/_\(^R"\|uuu\)^M), move over
the marker characters (ell), yank the corresponding
ASCII character (yl), move to the output (‘o), paste
the ASCII character (p), move to the end of the out-
put ($), mark the new output location (mo), and
finally, move back to the BF program, move over
the executed instruction, grab the next instruction,
locate its commands, and execute them, as before.

1 (‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@")

Data input with , is similarly:

1 ‘ i y mi ‘ a/ ^R"_^MT_ye‘ txt p ‘ p mpyl ‘ c/_\V^R"^
Mf−ly2tX@"

Which simply performs the reverse lookup and
stores the result in the current memory cell.

We are close, but, alas!, nothing is ever simple,
and BF’s conditional looping becomes more com-
plicated. The BF [instruction means precisely “if
the byte at the data pointer is zero, then instead of
moving the instruction pointer forward to the next
command, jump it forward to the command after the
matching] command.”

1 ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"

Meaning, navigate to the memory tape (‘t), yank
a memory cell (yt), navigate to the forward as-
sist commands (‘f), search for either the yanked
cell, or, if it is not found, the character n, fol-
lowed by x (/\(^R"\|n\)x^M), and yank and ex-
ecute the given commands, using the process as be-
fore (f-ly2tX@"). This search allows us to achieve
the conditional portion of the [instruction—we will
include a marker for only “0”, so only a memory cell
of “0” will find a match—all others will be directed to
the “n” character. Our forward assist then appears
as:

1 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

If the memory cell is 0, the previous search
matches _0x, and the commands following it are
yanked and executed. If the memory cell is not
0, the previous search matches _nx, and the com-
mands following it instead are yanked and exe-
cuted. For 0, we have: go to the BF program
(‘p), navigate to the corresponding] instruction
(%), move to the instruction after this (), mark
the new location in the program (mp), and then
yank and execute the next instruction, as before.
(yl‘c/_\V^R"^Mf-ly2tX@") For non-0, we have: go
to the BF program (‘p), navigate to the next instruc-
tion (), mark the new location in the program (mp),
and then yank and execute the next instruction, as
before. (yl‘c/_\V^R"^Mf-ly2tX@")

] is now straightforward. Following the same
patterns, we have:

1 ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"

for the conditional search, and

1 _b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p%
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

as the backward assist commands. An ardent
observer may argue the the vim % command vi-
olates our copy/paste/search/replace design, and,
alas!, this is so. However, we argue that a series
of searches, increments, and decrements—like those

74

1 :%s/\^A/\="\<C−A>"/g|%s/\^X/\="\<C−X>"/g|%s/\^R/\="\<C−R>"/g|%s/\^M/\n/g |06
0 f−ly$@"

3 ### launch with gg2yy@" ###
@xoreaxeaxeax

5
_c : _s1−gg0mh ‘ h/_t^Mnjmt ‘ h/_p^Mnjmp‘ h/_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_s2^Mnf−ly$@"njmt_j

7 _s2−‘h/_a^Mnjma ‘ h/_c^Mnf :mc ‘ h/_f^Mnf_mf ‘ h/_b^Mnf_mb‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"
z_>−‘twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xs_<−‘tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

9 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xa_nx:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xmpyl
_b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xm_nx:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xly2t

11 _+−‘t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xo_−−‘t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_/−−
]− ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"Xd[− ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"X^$0x:−

13 _v. $7yy_.− ‘tyw ‘ a/_\(^R" \ | uuu\)^Mellyl ‘ op$mo ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xel ly
$‘ p mpy‘ pyl ‘ a,− ‘ i y mi ‘ a/ ^R"_^MT_ye‘ tvt p ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_#−

15 _o :

17
_i :

19 100^M

21 _t :
0 0

23 0
0 0

25 0

27 _a :
___0 .___1 .___2 .___3 .___4 .___5 .___6 .___7 .___8 .___9 .__10 ^M_11 .__12 .__13 .__14 .__15 ._

29 __16 .__17 .__18 .__19 .__20 .__21 .__22 .__23 .__24 .__25 .__26 .__27 .__28 .__29 .__30 .__31 ._
__32 __33 !__34 "__35 #__36 $__37 %__38 &__39 ‘__40 (__41)__42 ∗__43 +__44 ,__45 −__46 .__47 /_

31 __48 0__49 1__50 2__51 3__52 4__53 5__54 6__55 7__56 8__57 9__58 :__59 ;__60 <__61 =__62 >__63 ?_
__64 @__65 A__66 B__67 C__68 D__69 E__70 F__71 G__72 H__73 I__74 J__75 K__76 L__77 M__78 N__79 O_

33 __80 P__81 Q__82 R__83 S__84 T__85 U__86 V__87 W__88 X__89 Y__90 Z__91 [__92 __93]__94 ^__95 __
__96 ‘__97 a__98 b__99 c_100 d_101 e_102 f_103 g_104 h_105 i_106 j_107 k_108 l_109 m_110 n_111 o_

35 _112 p_113 q_114 r_115 s_116 t_117 u_118 v_119 w_120 x_121 y_122 z_123 {_124 | _125 }_126 ~_127 ._
_uuu .

37
_p:

39 +[−>,−−−−−−−−−−[<+>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>[>+>+<<−]>>[<<+>>−]<>>>+++++++++[<<<[>+
>+<<−]>>[<<+>>−]<[<<+>>−]>>−]<<<[−]<<[>+<−]]<]>>[<<+>>−]<<>+<−[>+[>+>+<<−]>>[<<+>>−]<>+<−−>>>>>>>

41 >+<<<<<<<<[>+<−<[>>>+>+<<<<−]>>>>[<<<<+>>>>−]<<<>[>>+>+<<<−]>>>[<<<+>>>−]<<<<>>>[>+>+<<−]>>[<<+>>
−]<<<[>>>>>+<<<[>+>+<<−]>>[<<+>>−]<[>>[−]<<−]>>[<<<<[>+>+<<−]>>[<<+>>−]<>>>−]<<<−<<−]+>>[<<[−]>>−

43]<<>[−]<[>>>>>>[−]<<<<<<−]<<>>[−]>[−]<<<]>>>>>>>>[−<<<<<<<[−]<<[>>+>+<<<−]>>>[<<<+>>>−]<<<>>[>+<−
]>[[>+>+<<−]>>[<<+>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>−]<<−<−]+++++++++>[<−>

45 −]<[>+<−]<[>+<−]<[>+<−]>>>[<<<+>>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>>+<−]<<−
<−]>>>>[<<<<+>>>>−]<<<<>[−]<<+>]<[[>+<−]+++++++[<+++++++>−]<−><.[−]>>[<<+>>−]<<−]>++++[<++++++++>

47 −]<.[−]>>>>>>>]<<<<<<<<>[−]<[−]<<−]++++++++++.[−]#

Figure 20 – VIM Execution Engine

we have already shown - could be used to implement
%’s functionality in a more perfect manner; we leave
this as an exercise for the purists.

But lo! With the implementation of the 8 BF
instructions, our execution engine is complete! Fig-
ure 20 shows a cleanly formatted version of the
final machine. The demonstration machine uses
our copy/paste/search/replace commands to calcu-
late the prime numbers up to 100. For ease of
use, we add an introductory %s search and replace
sequence—momentarily allowing ourselves to enter
ex commands—in order to insert the control char-
acters (ˆ M, ˆ R, etc.) needed throughout the rest
of the machine. This provides us a pure-ASCII file,
without the need to enter special characters. Simply
copy the below, paste into vanilla vim, launch with
gg2yy@", and witness the awesome Turing-complete
power of our benevolent editor!54

54unzip pocorgtfo12.pdf vimmmex.tar.gz
git clone https://github.com/xoreaxeaxeax/vimmmex

75

