
5 SWD Marionettes; or,
The Internet of Unsuspecting Things

by Micah Elizabeth Scott

Greetings, neighbors! Let us today gather to cel-
ebrate the Internet of Things. We live in a world
where nearly any appliance, pet, or snack food can
talk to the Cloud, which sure is a disarming name for
this random collection of computers we’ve managed
to network together. I bring you a humble PoC to-
day, with its origins in the even humbler networking
connections between tiny chips.

5.1 Firmware? Where we’re going,
we don’t need firmware.

I’ve always had a fascination with debugging inter-
faces. I first learned to program on systems with
no viable debugger, but I would read magazines in
the nineties with articles advertising elaborate and
pricey emulator and in-circuit debugger systems.
Decades go by, and I learn about JTAG, but it’s
hard to get excited about such a weird, wasteful, and
under-standardized protocol. JTAG was designed
for an era when economy of silicon area was critical,
and it shows.

More years go by, and I learn about ARM’s Se-
rial Wire Debug (SWD) protocol. It’s a tantalizing
thing: two wires, clock and bidirectional data, give
you complete access to the chip. You can read or
write memory as if you were the CPU core, in fact
concurrently while the CPU core is running. This is
all you need to access the processor’s I/O ports, its
on-board serial ports, load programs into RAM or

flash, single-step code, and anything else a debug-
ger does. I took my first dive into SWD in order to
develop an automated testing infrastructure for the
Fadecandy LED controller project. There was much
yak shaving, but the result was totally worthwhile.

More recently, Cortex-M0 microcontrollers have
been showing up with prices and I/O features com-
petitive with 8-bit microcontrollers. For example,
the Freescale MKE04Z8VFK4 is less than a dollar
even in single quantities, and there’s a feature-rich
development board available for $15. These micros
are cheaper than many single-purpose chips, and
they have all the peripherals you’d expect from an
AVR or PIC micro. The dev board is even compat-
ible with Arduino shields.

In light of this economy of scale, I’ll even con-
sider using a Cortex-M0 as a sort of I/O expander
chip. This is pretty cool if you want to write micro-
controller firmware, but what if you want something
without local processing? You could write a sort
of pass-through firmware, but that’s extra complex-
ity as well as extra timing uncertainty. The SWD
port would be a handy way to have a simple remote-
controlled set of ARM peripherals that you can drive
from another processor.

Okay! So let’s get to the point. SWD is neat,
we want to do things with it. But, as is typical
with ARM, the documentation and the protocols are
fiercely layered. It leads to the kind of complexity
that can make little sense from a software perspec-
tive, but might be more forgivable if you consider
the underlying hardware architecture as a group of
tiny little machines that all talk asynchronously.

The first few tiny machines are described in the
250-page ARM Debug Interface Architecture Spec-
ification ADIv5.0 to ADIv5.2 tome.26 It becomes
apparent that the tiny machines must be so tiny be-
cause of all the architectural flexibility the designers
wanted to accommodate. To start with, there’s the
Debug Port (DP). The DP is the lower layer, clos-
est to the physical link. There are different DPs for
JTAG and Serial Wire Debug, but we only need to
be concerned with SWD.

We can mostly ignore JTAG, except for the pro-
cess of initially switching from JTAG to SWD on

26http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031c/index.html

26

At least 50 clocks
With SWDIOTMS

HIGH

At least 50 clocks
With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS

Figure 12 – JTAG-to-SWD sequence timing

systems that support both options. SWD’s clock
matches the JTAG clock line, and SWD’s bidirec-
tional data maps to JTAG’s TMS signal. A magic
bit sequence in JTAG mode on these two pins will
trigger a switch to the SWD mode, as shown in Fig-
ure 12.

SWD will look a bit familiar if you’ve used SPI
or I2C at all. It’s more like SPI, in that it uses a
fast and non-weird clocking scheme. Each proces-
sor’s data sheet will tell you the maximum SWD
speed, but it’s usually upwards of 20 MHz. This
hints at why the protocol includes so many asyn-
chronous layers: the underlying hardware operates
on separate clock domains, and the debug port may
be operating much faster or slower than the CPU
clock.

Whereas SPI typically uses separate wires for
data in and out, SWD uses a single wire (it’s in
the name!) and relies on a “turnaround” period to
switch bus directions during one otherwise wasted
clock cycle that separates groups of written or re-
turned bits. These bit groups are arranged into tiny
packets with start bits and parity and such, using
turnaround bits to separate the initial, data, and
acknowledgment phases of the transfer. For exam-
ple, see Figures 13 and 14 to execute read and write
operations and for all the squiggly details on these
packets, the tome has you covered starting with Fig-
ure 4-1.

These low-level SWD packets give you a
memory-like interface for reading and writing reg-
isters; but we’re still a few layers removed from the
kind of registers that you’d see anywhere else in the
ARM architecture. The DP itself has some registers
accessed via these packets, or these reads and writes
can refer to registers in the next layer: the Access
Port (AP).

The AP could really be any sort of hardware that
needs a dedicated debug interface on the SoC. There
are usually vendor specific access ports, but usually

you’re talking to the standardized MEM-AP which
gives you a port for accessing the ARM’s AHB mem-
ory bus. This is what gives the debugger a view of
memory from the CPU’s point of view.

Each of these layers are of course asynchronous.
The higher levels, MEM-AP and above, tend to
have a handshaking scheme that looks much like
any other memory mapped I/O operation. Write
to a register, wait for a bit to clear, that sort of
thing. The lower level communications between DP
and AP needs to be more efficient, though, so reads
are pipelined. When you issue a read, that trans-
action will be returning data for the previous read
operation on that DP. You can give up the extra
throughput in order to simplify the interface if you
want, by explicitly reading the last result (without
starting a new read) via a Read Buffer register in
the DP.

This is where the Pandora’s Box opens up. With
the MEM-AP, this little serial port gives you full ac-
cess to the CPU’s memory. And as is the tradition
of the ARM architecture, pretty much everything is
memory-mapped. Even the CPU’s registers are in-
directly accessed via a memory mapped debug con-
troller while the CPU is halted. Now everything
in the thousands of pages of Cortex-M and vendor-
specific documentation is up for grabs.

27

P
ar

ity

001Tr
n

S
to

p

P
ar

ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]

Figure 13 – Serial Wire Debug successful read operation

P
a

ri
ty

T
rn001T
rn

S
to

p

P
a

ri
ty

A
P

n
D

P

0

S
ta

rt

A[2:3]

P
a

rk WDATA[0:31]

Wire driven by: Host Target Host

Clock

ACK[0:2]RnW

Figure 14 – Serial Wire Debug successful write operation

5.2 Now I’m getting to the point.

I like making tools, and this seems like finally the
perfect layer to use as a foundation for something
a bit more powerful and more explorable. Combin-
ing the simple SWD client library I’d written earlier
with the excellent Arduino ESP8266 board support
package, attached you’ll find esp8266-arm-swd,27
an Arduino sketch you can load on the $5 ESP8266
Wi-Fi microcontroller. There’s a README with
the specifics you’ll need to connect it to any ARM
processor and to your Wi-Fi. It provides an HTTP

GET interface for reading and writing memory.
Simple, joyful, and roughly equivalent security to
most Internet Things.

These little HTTP requests to read and write
memory happen quickly enough that we can build
a live hex editor that continuously scans any visible
memory for changes, and sends writes whenever any
value is edited. By utilizing all sorts of delightful
HTML5 modernity to do the UI entirely client-side,
we can avoid overloading the lightweight web server
on the ESP8266.

This all adds up to something that’s I hope could
27unzip pocorgtfo10.zip esp8266-arm-swd.zip

28

2 < l i>

Turn the LED
4 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100800"> red ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200800"> green ,
6 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300000"> blue ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200000"> cyan ,
8 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100000"> pink ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00000000"> whi t e i sh , or
10 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300800"> o f f
</ l i>

12 < l i>
Now <a i s="swd−async−ac t i on " href="/ api / ha l t "> ha l t the CPU and l e t ’ s have some

sc ra t ch RAM:
14 <p>

<swd−hexed i t addr="0x20000000" count="32"></swd−hexed i t>
16 </p>

</ l i>
18 < l i>

<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x20000000=0x22004b0a&.=0x4a0a601a&.=0
x601a4b0a&.=0x4a0b4b0a&.=0x4b0b6013&.=0x2b003b01&.=0x2380d1fc&.=0x6013035b&.=0x3b014b07
&.=0xd1fc2b00&.=0x46c0e7f0&.=0x40048008&.=0x00300800&.=0x400 f f014&.=0x00200800&.=0
x400 f f000&.=0x00123456&.=0 x 7 f f f f f b c &.=0x00000001">

20 Load a smal l program

22 in to the s c ra t ch RAM
</ l i>

24 < l i>
<a i s="swd−async−ac t i on " href="/ api / reg /wr i t e ?0 x3c=0x20000000"> Set the program

counter
26 ()

to the top o f our program
28 </ l i>

< l i>
30 The PC <i>sample</ i> r e g i s t e r ()

t e l l s you where the <i>running</ i> CPU i s
32 </ l i>

< l i>
34 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0xE000EDF0=0xA05F0001"> Let the CPU

run !
(or t ry a <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0xE000EDF0=0xA05F0005">

s i n g l e s tep)
36 </ l i>

< l i>
38 While the program i s running , you can modify i t s de lay value :

40 </ l i>

Figure 15 – Single Wire Debug from HTML5

29

be used for a kind of literate reverse engineering and
debugging, in the way Knuth imagined literate pro-
gramming. When trying to understand a new plat-
form, the browser can become an ideal sandbox for
both investigating and documenting the unknown
hardware and software resources.

The included HTML5 web app, served by the Ar-
duino sketch, uses some Javascript to define custom
HTML elements that let you embed editable hex
dumps directly into documentation. Since a register
write is just an HTTP GET, hyperlinks can cause
hardware state changes or upload small programs.

There’s a small example of this approach on the
“Memory Mapped I/O” page, designed for the $15
Freescale FRDM-KE04Z board. This one is handy
as a prototyping platform, particularly since the I/O
is 5V tolerant and compatible with Arduino shields.
Figure 15 contains the HTML5 source for that demo.

This sample uses some custom HTML5 ele-
ments defined in /script.js: swd-async-action,
swd-hexedit, and swd-hexword. The swd-async-
-action isn’t so exciting, it’s really just a spe-
cial kind of hyperlink that shows a pass/fail re-
sult without navigating away from the page. The
swd-hexedit is also relatively mundane; it’s just
a shell that expands into many swd-hexword ele-
ments. That’s where the substance is. Any swd--
hexedit element that’s scrolled into view will be
refreshed in a continuous round-robin cycle, and the
content is editable by default. These become simple
but powerful tools.

5.3 Put a chip in it!
While the practical applications of esp8266-arm-swd
may be limited to education and research, I think
it’s an interesting Minimum Viable Internet Thing.
With the ESP8266 costing only a few dollars, any-
thing with an ARM microcontroller could become
an Internet Thing with zero firmware modification,
assuming you can find the memory addresses or
hardware registers that control the parts you care
about. Is it practical? Not really. Secure? Defi-
nitely not! But perhaps take a moment to consider
whether it’s really any worse than the other so-
lutions at hand. Is ARM assembly and HTML5
your kind of fun? Please send pull requests. Happy
hacking

30

