
Stage 4: At 3,840 bytes per 
second (4 controllers of 2 
bytes at 60 frames per 
seconds), write a block 
transfer loader into memory 
and execute it.

Stage 5: Use block loader to 
transfer intended SNES 
payload of variable length 
and execute it.

Stage 6: Reset SNES to 
clear state, execute 
Twitch chat interface, 
read text in 5-bit or 7-bit 
encodings, respond to 
control packets to 
display web view, make 
Twitch chat say Hi, win 
the Internet.

Stage 2: Press buttons to 
write two command 
packets in memory one 
nibble per frame, overwrite 
jump to execute.

Stage 3: Escape SGB, hang 
Pokemon to stop music, 
read a set number of 
button presses 1 byte per 
frame to write a faster 
transfer method and 
execute it.

Stage 1: Swap Pokemon 
and items to get rival's 
name in items list, toss 
items to form a button 
reading payload, and 
leave menu to execute it.

Stage 0: Inject
useful data by
naming the
rival RxRxP

K and 
resetting while
saving to get
255 Pokemon.
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3 Pokémon Plays Twitch
by Allan Cecil (dwangoAC), Ilari Liusvaara (Ilari) and Jordan Potter (p4plus2)

For the Awesome Games Done Quick (AGDQ)
2015 charity marathon we exploited a chain of un-
modified Nintendo game console components con-
sisting of a Pokémon Red Game Boy cartridge in a
Super Game Boy running in a Super Nintendo. We
plugged the latter into custom hardware posing as
a normal controller. In this seven-stage exploit, we
corrupted a save file to give ourselves 255 Pokémon,
swapped Pokémon, and tossed items to plant shell-
code. We committed a series of atrocities using
documented command packets and ultimately broke
into the Super Nintendo’s working RAM, where we
wrote our own chat interface to display live contents
of the Twitch chat and even a representation of a de-
faced website.

3.1 TAS’ing a Game to execute Ar-
bitrary Code

TASVideos2 hosts Tool-Assisted Speedruns of
games that are created using an emulator with speed

controls such as slow motion and frame advance,
along with the ability to save and restore the state
of the game (or, rather, of the entire console) at any
time. TAS movie files consist of a list all of the but-
ton presses sent to the console every frame from the
time it is powered on until the game is beaten. It
aids our poor human reflexes, but it can do a lot
more—like arbitrary code execution!

The first run on the site to use this ability to
execute arbitrary code to jump to the credits of
a game was Masterjun’s Super Mario World run.
Later, Bortreb used arbitrary code execution in a
run of Pokémon Yellow, marking the first time ex-
ternal content was added to an existing game.

In late 2013, dwangoAC worked with Ilari and
Masterjun to present a run at AGDQ 2014 that
programmed the games Snake and Pong into Super
Mario World on a real console using a replay device
(also known as a “bot”) from True.3 This was a huge
success and was covered by Ars Technica, but we
knew that we could do even more, which ultimately
led us to the project described in this article.4

3.2 The Game Choice

We started with an end-goal of executing arbi-
trary code on a Super Nintendo (SNES) using a
Super Game Boy (SGB) cartridge as the entry
point. We initially planned to use Pokémon Yel-
low based on Bortreb’s exploit in that game, but
quickly discovered that the SGB detection routine
used by Pokémon Yellow is extremely broken and
only worked on a real SGB by pure chance.5 Af-
ter looking at other options, we chose to use the
Pokémon Red version, which uses a more reliable
SGB detection routine that gets us access to the
full SGB palette, a custom border, and consistent
timing benefits we’ll discuss later.6 Using Pokémon

2http://tasvideos.org
3http://truecontrol.org
4It should also be noted that all recent AGDQ events have directly benefited the Prevent Cancer Foundation which was a

huge motivator for several of us who worked on this project. The block we presented this exploit in at AGDQ 2015 helped raise
over $50K and the marathon as a whole raised more than $1.5M toward cancer research, making this project a huge success on
multiple levels.

5In brief, the detection routine is extremely sensitive to how many DMG clock cycles various operations take; the emulator
is likely slightly inaccurate, which causes the detection to fail, but from looking at the behavior it seems like it “just works” on
the real hardware. This is sheer luck, and the game developers likely never even knew it was so fragile.

6If the SGB BIOS does not find the special codes in the DMG game header that indicate it’s an SGB-enabled game ($146
equal to $03), it locks up the command channel until the game is reset, rendering any SGB based exploitation impossible. See
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header for more details.
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Red also has another added benefit in that the entire
game has been skillfully disassembled.7

3.3 The Emulator

When we started this project in August 2014, the
only emulator capable of emulating an SGB inside of
an SNES at a low enough level for our needs was the
BSNES emulator. Unfortunately, although BSNES
is very accurate at emulating an SNES, it doesn’t do
a very good job of emulating an SGB. The Gambatte
Dot-Matrix Game Boy (DMG) emulator is likewise
very accurate, but is unable to emulate an SGB on
its own. Ilari was able to create a hybrid emulation
core using BSNES to emulate the SNES↔DMG in-
terface chip while using Gambatte for DMG emula-
tion. This was a considerable undertaking, but in
the end the emulator was very usable, albeit some-
what slow, as properly emulating the synchroniza-
tion between the SNES CPU and the DMG CPU
is a challenge. Ilari continued to provide emulator
development and scripting support throughout the
project.

3.4 The Hardware

We didn’t just want to exploit a game in the sandbox
of a console emulator and call it a Proof of Concept.
We wanted to do the job properly and create an ac-
tual exploit that would work on real hardware. Only
one member of our team (dwangoAC) had all of
the required hardware in one place, namely a SNES
console, a SGB cartridge, a copy of Pokémon Red,
and the replay device posing as a controller, also
known as a “bot.”8 Because we wanted to stream
data from an attached computer, we opted to use
an older, serial-over-USB connected device, namely
True’s NES/SNES Replay Device. This choice of
hardware had a few limitations but worked out well
for the project in the end.

Figure 1 – The legendary TASBot

3.5 The Plan

We were initially unsure what kind of payload to
create once we had gained the ability to execute
arbitrary code on the SNES. Initially we investi-
gated methods of showing crude video, but aban-
doned it after spending far too much time failing to
increase the datarate and running into limits with
the processing speed of the SNES’s 65C816 CPU.
An IRC discussion about Twitch Plays Pokémon9

led dwangoAC and p4plus2 to brainstorm what it
would take to incorporate similar elements into our
payload, and the concept of Pokémon Plays Twitch
was hatched—where a Pokémon character enters a
Twitch chat room and “plays” Twitch. In the end,
we took it to the next level by giving Red a voice in
a chat interface on the SNES and giving TASBot,
the robot holding the replay board, the ability to
speak through espeak and argue with Red. There’s
much more to say about that, but let’s first get to
the point where we can execute arbitrary code!

7unzip -j pocorgtfo10.pdf pokemon_plays_twitch/pokered-master.zip
8The term “bot” was originally used because it’s as if you have a robot playing the game for you; dwangoAC later attached

one of these replay devices to a R.O.B. robot as shown in Figure 1 and after presenting Pong and Snake on SMW, the name
TASBot came to be associated with the combination as described at http://tasvideos.org/TASBot.

9A way of crowdsourcing gameplay by parsing commands sent over IRC.
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Figure 2 – A strange rival

3.6 Stage 0: Corrupting a save game.

(3–7 bytes per minute.)

We start the game by creating a save file, giving
ourselves the default name of Red and naming our
rival RxRx

PK

as shown in Figure 2. We then save the
game as in Figure 3, but reset the console directly af-
ter it starts writing to the cartridge’s SRAM. There
is checksumming on most of the values in the save
file but at least one value has no checksum at all,
namely the byte at the start of the “party data”
that stores the number of Pokémon that have been
caught. By some chance, this value in SRAM (at
0xAF2C, or 0x2F2C when paged) is initially set to
FF, so we wait long enough for valid name data and
a save file header to be written before resetting. It is
possible to do this with human reflexes as the win-
dow is approximately 20 ms but we opted to run
a wire from our replay device to pin 19 on the ex-
pansion port on the underside of the SNES. This
allowed us to trigger a reset by shorting the pin to
ground, as shown in Figure 3.10

3.7 Stage 1: Writing Z80 assembly
by swapping Pokémon and toss-
ing items.

(30 bytes per second.)
After loading the game but before changing any-

thing, the initial state of the GBBUS memory map
is as follows:11

1 0xD163 Number o f Pokemon caught ,
corrupted to 0xFF in Stage 0 .

3 0xD164 Pokemon IDs (1 byte each ) ,
corrupted to 0xFF .

5 0xD16A Sen t i n e l byte (0xFF)
0xD16B Pokemon Data (44 bytes each ) ;

7 a l l are corrupted to 0xFF .
0xD273 Pokemon o r i g i n a l t r a i n e r s ;

9 a l l are corrupted to 0xFF .
0xD2B5 Pokemon nicknames ;

11 a l l are corrupted to 0xFF .
0xD2F7 Pokemon owned bitmap (19 bytes ) ;

13 a l l z e r o e s .
0xD30A Pokemon seen bitmap (19 bytes ) ;

15 a l l z e r o e s .
0xD31D Number o f i tems ; i n i t i a l l y 0

17 0xD31E Items array ; each entry i s 2 bytes ,
an item ID and item count .

19 After the l a s t item , the re i s an FF.
( I n i t i a l l y l o ca t ed at 0xD31E . )

21 0xD347 Money as Binary−Coded Decimal .
( I n i t i a l l y 00 30 00 , $3000 . )

23 0xD34A Rival ’ s name . ( Set dur ing Stage 0 ,
i n i t i a l l y

25 91 F1 91 F1 E1 50 00 00 00 00 00 . )
0xD355 <misc data>

27 0xD36E Map l e v e l s c r i p t po in t e r .
( I n i t i a l l y B0 40 . )

We want to adjust some of these values to cre-
ate a payload described in the next section, and the
game conveniently provides three ways to arrange
the state of memory.

• Swapping Pokémon: The game implements
moving Pokémon around the list by swapping
the raw contents of entries in the ID, Data,
Original trainer, and nickname tables, which
happens to offset data by an odd amount.
Since we have 255 Pokémon instead of the 141
the game was originally limited to we can swap

10As with many exploits, the seed for this came from Bortreb’s Pokémon Yellow exploit, which itself came from earlier
discoveries of others. Masterjun adapted the exploit for Pokémon Red using the BizHawk DMG emulator and dwangoAC took
this information and made the Stage 0 and Stage 1 movie file in LSNES.

11The same values can be found in the GBWRAM region at an offset of -0xC000, so the value for 0xD163 in GBBUS (which
isn’t visible in the LSNES memory editor) can instead be found at 0x1163 in GBWRAM. GBBUS addressing is used throughout
for consistency with existing resources such as the pokered disassembly.

12This means the Pokémon data now extends past end of WRAM, and in fact the WRAM should in effect loop around,
although this isn’t used.
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around the contents of anything in WRAM
above 0xD164.12

• Tossing items: Throwing away unwanted
items decrements the second byte in an item’s
two-byte ID / Quantity pair. Unfortunately,
there are some items that can’t be tossed, ei-
ther because the game prevents tossing them
or because doing so softlocks or crashes the
game.

• Swapping items: Items can be swapped
around in the list of items, which normally
just swaps the item data. If you swap two of
the same item, the game tries to merge them
by adding their counts and then shifting the
item list. The shift adjusts the item count
and writes a new sentinel item ID. (It doesn’t
touch either the item count in that slot or the
old sentinel.)

Since we don’t have any items, let’s get some!
Swapping the first Pokémon with the tenth causes
the FF’s located at 0xD16B through 0xD196 to be
written to 0xD2F7 through 0xD322. Per the mem-
ory map, the number of items is located at 0xD31D
and this is changed along with lots of other nearby
addresses from 00 to FF, which causes the game to
think we have 255 items. We eventually enter the
item menu and proceed to toss a number of safe

items, but—because we can only ever decrement the
quantity byte in each item’s ID/Quantity two-byte
pair—we have to go back and swap Pokémon to make
what was once an ID into an item count and vice
versa.

In order to avoid softlocking the game, we have
to walk through the sequence in a very particular
order. There are several items that the game re-
fuses to toss, some that crash the game if you try to
toss them, some that can only be thrown once—after
which all items afflicted with this condition can no
longer be tossed. Some will crash the game simply
by being in the menu even if you never even select
them.

To work around these pitfalls, we prepare mem-
ory by doing several Pokémon and item swaps fol-
lowed by an initial round of tossing, we go back to
swap Pokémon in a way that realigns memory so we
can now toss what used to be item IDs. We swap
several Pokémon to relocate the Stage 1 code and
create a swath of 0’s in front of it, and at the very
end we swap two identical items to shift memory two
spaces back. That’s a lot to take in in one sentence,
so Figure 4 diagrams the complete list of changes
we make showing the value changes as anchored ini-
tially from GBBUS 0xD349.

The primary purpose of all this swapping and
tossing is to create a better way to craft our own

13The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4, but they turn into 00 63 and 00 91 because we
abuse the fact that the game assumes a quantity of 00 is the same as FF and you can only have ninety-nine of any given item
in one slot. This results in FF+ F4 = 1F3 which is larger than the sum mod 256 dec., at which point the game stores 63 in one

Figure 3 – Corrupting a save game by pressing A to save, then resetting 24 frames later.

10



Address ## ID ## ID ## ID ## ID ## ID ## ID ## ID

0xD34A  00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F  00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F  00 91 F0 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F  00 91 F0 91 F0 E1 50 00 00 00 00 00 00 00

0xD32F  00 91 F0 E1 50 91 F0 00 00 00 00 00 00 00

0xD32F  00 91 F0 00 00 91 F0 00 00 00 00 E1 50 00

0xD32F  00 91 F0 00 00 91 F0 00 00 00 00 E1 38 00

0xD32F  00 91 F0 00 00 91 F0 00 F4 00 00 E1 38 00

0xD32F  00 91 F0 00 63 91 F0 00 91 00 00 E1 38 00

0xD32F  00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

Address ID ## ID ## ID ## ID ## ID ## ID ## ID ##

0xD324  00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

0xD324  00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 D3

0xD324  00 91 F0 00 4F 91 F0 00 91 00 00 CD 38 D3

0xD324  00 91 F0 00 4F 91 F0 00 91 22 00 CD 38 D3

0xD324  00 91 F0 00 4F 91 F0 F8 91 22 00 CD 38 D3

0xD324  00 91 F0 00 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324  00 91 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324  00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD362  00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Pokemon 1  10 datastart = 0xD349
item    3  5  datastart = 0xD347
Pokemon 3  6  datastart = 0xD331
item    3  4  datastart = 0xD32F

(same ID swap)

Pokemon   4   5 datastart = 0xD324
(even address, so now ID and ## are shifted)

Pokemon  -8  -7  datastart = 0xD350
Pokemon   3   4  [0xD35B] = 00
Pokemon   4   5  [0xD366] = 00
Pokemon   5   2  datastart = 0xD366
Pokemon   2  -11 [0xD2CC] = 00
Pokemon -11  -9  [0xD32E] = 00
item      4   5  datastart = 0xD362

toss 1 item

 toss 1 item

toss 24 items

toss 12 items

toss 20 items

toss 45 items

toss 20 items

toss 222 items

toss 8 items

toss 27 items

toss 8 items

toss 27 items

Figure 4 – Pokémon and items are re-arranged in memory to create shellcode.
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Items1 with1 these1 IDs1 can1 be1 tossed
Game1 refuses1 to1 toss1 items1 with1 these1 IDs
Trying1 to1 toss1 items1 with1 these1 IDs1 crashes1 the1 game
Items1 with1 these1 IDs1 are1 initially1 tossableF1 but1 tossing1 any1 makes1 game1 to1 refuse1 to1 toss1 more
Just1 trying1 to1 show1 these1 IDs1 freezes1 the1 game

xC xDxL x( x) xR xS xH xZ x+ x- xU xA xB xE xF
INC C DEC CLx NOP LD BCFd(Z LD 9BCAFA INC BC INC B DEC B LD BFd- RLCA LD 9a(ZAFSP ADD HLFBC LD AF9BCA DEC BC LD CFd- RRCA
INC E DEC E(x STOP L LD DEFd(Z LD 9DEAFA INC DE INC D DEC D LD DFd- RLA JR r- ADD HLFDE LD AF9DEA DEC DE LD EFd- RRA
INC L DEC L)x1 JR NZFr- LD HLFd(Z LD 9HLEAFA INC HL INC H DEC H LD HFd- DAA JR ZFr- ADD HLFHL LD AF9HLEA DEC HL LD LFd- CPL
INC A DEC ARx JR NCFr- LD SPFd(Z LD 9HLNAFA INC SP INC 9HLA DEC 9HLA LD 9HLAFd- SCF JR CFr- ADD HLFSP LD AF9HLNA DEC SP LD AFd- CCF
LD CFH LD CFLSx LD BFB LD BFC LD BFD LD BFE LD BFH LD BFL LD BF9HLA LD BFA LD CFB LD CFC LD CFD LD CFE LD CF9HLA LD CFA
LD EFH LD EFLHx LD DFB LD DFC LD DFD LD DFE LD DFH LD DFL LD DF9HLA LD DFA LD EFB LD EFC LD EFD LD EFE LD EF9HLA LD EFA
LD LFH LD LFLZx LD HFB LD HFC LD HFD LD HFE LD HFH LD HFL LD HF9HLA LD HFA LD LFB LD LFC LD LFD LD LFE LD LF9HLA LD LFA
LD AFH LD AFL+x LD 9HLAFB LD 9HLAFC LD 9HLAFD LD 9HLAFE LD 9HLAFH LD 9HLAFL HALT LD 9HLAFA LD AFB LD AFC LD AFD LD AFE LD AF9HLA LD AFA
ADC AFH ADC AFL-x ADD AFB ADD AFC ADD AFD ADD AFE ADD AFH ADD AFL ADD AF9HLA ADD AFA ADC AFB ADC AFC ADC AFD ADC AFE ADC AF9HLA ADC AFA
SBC AFH SBC AFLUx SUB B SUB C SUB D SUB E SUB H SUB L SUB 9HLA SUB A SBC AFB SBC AFC SBC AFD SBC AFE SBC AF9HLA SBC AFA
XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND 9HLA AND A XOR B XOR C XOR D XOR E XOR 9HLA XOR A
CP H CP LBx OR B OR C OR D OR E OR H OR L OR 9HLA OR A CP B CP C CP D CP E CP 9HLA CP A

CALL ZFa(Z CALL a(ZCx RET NZ POP BC JP NZFa(Z JP a(Z CALL NZFa(Z PUSH BC ADD AFd- RST LLH RET Z RET JP ZFa(Z PREFIX CB ADC AFd- RST L-H
CALL CFa(ZDx RET NC POP DE JP NCFa(Z CALL NCFa(Z PUSH DE SUB d- RST (LH RET C RETI JP CFa(Z SBC AFd- RST (-H

Ex LDH 9a-AFA POP HL LD 9CAFA PUSH HL AND d- RST )LH ADD SPFr- JP 9HLA LD 9a(ZAFA XOR d- RST )-H
Fx LDH AF9a-A POP AF LD AF9CA DI PUSH AF OR d- RST RLH LD HLFSPEr- LD SPFHL LD AF9a(ZA EI CP d- RST R-H

Figure 5 – Item IDs can double as Z80 opcodes.

code—as it would be quite tedious to use this method
to do anything longer.13 Here’s a disassembly of
what we’ve been able to write so far, starting from
0xD361.

LR35902 shellcode at 0xD361:  
30 00     JR NC,0       // nop
76        HALT          // wait for frame
F0 F8     LDH A, (0xF8) // load input
4F        LD C,A        // save in C
76        HALT          // wait for frame
F0 F8     LDH A, (0xF8) // load input
91        SUB C         // decode opcode
22        LD (HL+),A    // stage2[HL++] = A
00        NOP
CD 38 D3  CALL 0xD338   // call stage2

Player's
starting money

0xD362  00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Everything up to this point has been the process
of writing Stage 1, but now it’s time to walk through
executing it, although some of the shortcuts we took
require a bit of explanation.

First, the reason 0xD361 contains 30 is because
the beginning of the Stage 1 data is mostly copied
from the field that holds the rival name—which hap-
pens to be directly preceded by the player’s money.
Of this quantity we see the last two out of three
bytes represented here in BCD format; the full value
00 30 00 starts at 0xD360. It would take extra ef-
fort to eliminate the 30 00 portion, but because that
sequence is effectively a NOP, we leave it be.

To reduce the number of bytes that needed to
be modified, we used several clever tricks. The code
that jumps to this point sets HL to the jump target
address, and HL is a canonical pointer register that
can be written to. We reused 0xD36E (the map level
script pointer) as the loop jump address; upon exit-

ing the menu, the map level script pointer is loaded
and called, so it loads the value in 0xD36E into HL
and jumps to it.

1041 LD HL, 0xD36E
2 1044 LD A, (HL+)

1045 LD H, (HL)
4 1046 LD L ,A

1047 LD DE, 0x104C
6 104A PUSH DE

104B JP (HL) ; [D36E ]

Stage 1’s purpose is to read the buttons being
held down on the controller and write them some-
where, eventually executing what we’ve written us-
ing this slightly more efficient method than twid-
dling with Pokémon and items. At a high level,
this code will read a byte from the controller on one
frame, read another byte from the controller on the
next frame, subtract the two, store the result at a
given memory offset and repeat, successively storing
values one byte at a time in order in memory, and
ultimately executing said bytes.

The game’s NMI (Non-Maskable Interrupt) rou-
tine writes a bitmap of the current buttons be-
ing held down during each frame (mapped as the
buttons ABsSRLUD from lowest to highest bit)
to 0xFFF8, and HALT is used to wait for the next
frame. Unfortunately, the SGB BIOS cancels out
LEFT+RIGHT or UP+DOWN if they are pressed
simultaneously and instead converts those bits to
0’s. To work around it, our short routine reads
two frames and combines the values in a way that
can yield arbitrary bytes. Because of restrictions on

item and 190modFF = 91 is stored as the remainder in the other.
14There is no working way to ADD the two reads because we can’t write that opcode. Due to byte restrictions, we can’t use

JP either, but CALL is close enough. See Figure 5.

12



which bytes we can create, we use LD C,A to store
the first value and then SUB C to combine them.14

Using this method, we write the following data
to 0xD338, which is executed every frame; that is to
say, it is repeatedly executed even before it is fully
written!

1 18 27 <= f i r s t jump
3E 1C CD AF 00 21 4D D3 CD EB 5F 2E 58 00 CD

EB 5F 18 FE 79 00 18 00 06 AD 12 42 30
FB 40 91 18 42 00 00 18 00 00 00 <=
Stage 2 payload

3 18 D7 <= second jump

The memory range from 0xD338 to D360 con-
tains only 00’s and forms a cascade of harmless NOP
instructions. This is critical, because this entire sec-
tion is executed every time a byte is written; this
also means we have to be extremely careful with
what we write, to avoid executing an incomplete
Stage 2 that causes a crash. The solution is to write
a jump instruction of 18 27 into the first two bytes—
which will skip execution of Stage 2 while it is being
constructed. The sequence 18 27 can’t be entered
in one frame, but fortunately the incomplete form,
18 00, is effectively a NOP instruction. This gives
us the full range from 0xD33A to 0xD360 where we
can write whatever we want with impunity, and HL
points to 0xD33A.

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361
D338

write position
(by S1, from the data

sent via the controller)

exploit call

writes one byte
at each execution

exploited
address

written by inventory abuseplayer's
money

acts as a NOP

We write 0x18 (JR x) into current write position
and advance write position:

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 00

We write 0x27 into current write position, turn-
ing the first instruction into a nontrivial jump.

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39

We write the Second Stage to D33A–D360 which
is jumped over and not executed. This takes 39 it-
erations through the loop.

D33A

S2 payload (skipped) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
30 00

After this, we somehow need to jump to the
newly completed Stage 2. The HL now points to
0xD360 and the next byte we poke is 18, which turns
the first instruction in the Stage 1 code into JR 0,
which is still effectively a NOP.

We write 18 (JR x) to current position, turning
the 30 into 18, acting as a JR 0 instruction.

D33A

S2 payload (skipped) JR 0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
18

We write D7 into 0xD362, which modifies the in-
struction to be JR -41, which jumps to 0xD33A, the
start of the second payload. After one more call into
0xD338 and the subsequent jump to 0xD360, the ex-
ecution jumps to the Second Stage.

We write D7 (-41) to current position, turning
the jump into a jump to execute the Stage 2:

D33A

S2 payload (executed) JR -41 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
D7

One last note before moving on to what Stage 2
will do for us: as with most things in this exploit, en-
tering the Stage 2 payload isn’t as straightforward as
it should be, and this time it’s because the SNES and
the DMG run at different clock speeds and framer-
ates. It takes 351,120 cycles for the DMG to run one
frame, and 357,366 for the SNES to run one frame.
Each side polls the inputs once per their frame, and
the SNES side updates the inputs that the DMG
side reads once per frame. Since each SNES frame
takes slightly longer, the SNES regularly skips up-
dating inputs for one full DMG frame, causing the
input to be duplicated.15

This clock skew slip happens about every 56
DMG frames. (Sometimes it’s 57 frames between
slips due to slipping.) It takes a full 86 frames
to input the Stage 2 sequence because there are
39 bytes of payload plus 4 bytes total for prologue
and epilogue jump instructions, and each byte takes
2 frames to enter as a result of working around
L+R and U+D combinations being nulled out. This
means we have to cope with at least one clock skew
slip and because 86 isn’t that much bigger than 2*56

15This has implications even outside of TAS’ing: If you hold a button for a single frame you risk that input being lost (if
the previous frame had no buttons being pressed, that single frame’s press could be overwritten with the no buttons pressed
frame from before) or your buttons could be held for an extra frame (even though you let go, you hit right before the skew so
your buttons are sent for an additional frame). Both of these behaviors could cause a talented realtime player to question their
abilities as they wouldn’t have any idea that the console had been the cause of their input being wrong.
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Figure 6 – Sending payload (combos injected by first controller)

xC xDx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xE xF
INC C DEC C0x NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (a16),SP ADD HL,BC LD A,(BC) DEC BC LD C,d8 RRCA
INC E DEC E1x STOP 0 LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA JR r8 ADD HL,DE LD A,(DE) DEC DE LD E,d8 RRA
INC L DEC L2x JR NZ,r8 LD HL,d16 LD (HL+),A INC HL INC H DEC H LD H,d8 DAA JR Z,r8 ADD HL,HL LD A,(HL+) DEC HL LD L,d8 CPL
INC A DEC A3x JR NC,r8 LD SP,d16 LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),d8 SCF JR C,r8 ADD HL,SP LD A,(HL-) DEC SP LD A,d8 CCF
LD C,H LD C,L4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,(HL) LD C,A
LD E,H LD E,L5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,(HL) LD E,A
LD L,H LD L,L6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H,(HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,(HL) LD L,A
LD A,H LD A,L7x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD A,E LD A,(HL) LD A,A
ADC A,H ADC A,L8x ADD A,B ADD A,C ADD A,D ADD A,E ADD A,H ADD A,L ADD A,(HL) ADD A,A ADC A,B ADC A,C ADC A,D ADC A,E ADC A,(HL) ADC A,A
SBC A,H SBC A,L9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC A,B SBC A,C SBC A,D SBC A,E SBC A,(HL) SBC A,A
XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR (HL) XOR A
CP H CP LBx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP (HL) CP A

CALL Z,a16 CALL a16Cx RET NZ POP BC JP NZ,a16 JP a16 CALL NZ,a16 PUSH BC ADD A,d8 RST 00H RET Z RET JP Z,a16 PREFIX CB ADC A,d8 RST 08H
CALL C,a16Dx RET NC POP DE JP NC,a16 CALL NC,a16 PUSH DE SUB d8 RST 10H RET C RETI JP C,a16 SBC A,d8 RST 18H

Ex LDH (a8),A POP HL LD (C),A PUSH HL AND d8 RST 20H ADD SP,r8 JP (HL) LD (a16),A XOR d8 RST 28H
Fx LDH A,(a8) POP AF LD A,(C) DI PUSH AF OR d8 RST 30H LD HL,SP+r8 LD SP,HL LD A,(a16) EI CP d8 RST 38H

from http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html

Figure 7 – Z80 opcodes that can be sent through SGB input filtering.

the slip position must be relatively near the middle
to avoid having to deal with two slips.16

3.8 Stage 2: Sending packets to es-
cape SGB from very little space.

We have just 39 bytes to work with in the Stage 2
payload we just wrote and we need to make the most
out of every last byte. Fortunately, Pokémon Red
already contains a routine that sends a command
packet into the SNES. The catch is the code to send
that packet is in another ROM bank (0x1C) that

we need to switch to. While the ROM bank can be
switched by a single write, the game NMI routine
(which runs every frame) does not save the bank -
it switches to one stored in another memory address
instead. Two writes are needed to reliably change
the bank which would take too much space; however,
the common part of ROM (mapped regardless of
the bank) has a function that does something, then
switches banks and returns. That function makes
for a very useful gadget! The entry address for this
function is 0x00AF, with register A holding the bank
number.

16The movie we used was 2(prologue)+5(banksetting)+6(packetsend)+5(packetsend)+1(nop-for-
slip)+2(hang)+11(packet1)+7(packet2)+2(unused)+2(epilogue)=43 bytes. We later discovered
a different method where the smallest possible extended payload would have been 2(pro-
logue)+5(banksetting)+6(packetsend)+2(hang)+13(packet)+2(epilogue)=30 bytes which is still too much to input without a
slip due to our data rate being restricted to one nibble at a time, although the packet data’s 0x00 portion could potentially be
used for this purpose.

17It could be possible to use just one, by putting the NMI routine in a memory-mapped SGB packet register, but we decided
not to, as we would need full exploit abilities just to test if this method actually works because the emulator isn’t accurate
enough to test with.
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We need to send two separate command pack-
ets, described below.17 The packets aren’t a full 16
bytes in length like they appear to be, but 11 and 7
bytes; the tails of the packets are ignored, so we let
the packet payloads overrun into whatever happens
to be next. After sending the packets, we have no
use for the DMG anymore, so we hang the Z80 by
entering a tight loop.

The following Stage 2 assembly code is loaded
into 0xD33A—D360.

1 ; The gadget takes a new bank number in A.
3E 1C LD A, #$1C

3 ; Ca l l the bankswitch gadget .
CD AF 00 CALL $00af

5 ; The address o f the f i r s t packet to send .
21 4D D3 LD HL, packet1

7 ; Ca l l packet send rou t in e .
CD EB 5F CALL $5feb

9
; The low byte o f address o f the 2nd packet .

11 ; used to compensate input s l i p p i n g .
2E 58 LD L , 0x58

13 00 NOP
; Cal l packet send rout in e .

15 CD EB 5F CALL $5feb

17 18 FE JR −2 ; Hang the DMG.

19 packet1 : ; 0xd34d
DB 0x79 , 0x00 , 0x18 , 0x00 , 0x06 , 0xad ,

21 0x12 , 0x42 , 0x30 , 0xfb , 0x40

23 packet2 : ; 0xd358
DB 0x91 , 0x18 , 0x42 , 0x00 , 0x00 , 0x18 ,

25 0x00 , 0x00 , 0x00

Originally, the LD L, 0x58 ; NOP sequence was
LD HL, 0xD358 but we discovered that the transfer
routine leaves the upper eight bits of the address in
the H register at the end of the transfer. The trans-
fer end of the packet at 0xD34D will be 0xD35D, so
the H register will be D3, which is exactly the value
we want for the next packet, so we can save one byte
by just loading the L register. The saved byte can
taken to be NOP (00).

The repeated input can land on two inputs of
the same byte, or the last input of one byte and
first input of next. The latter is much better, since
for any byte pair, it is possible to construct three
valid inputs. However, the first is much worse: The
byte will be forced to 00, and even more unfortu-
nately, the frame rules always cause the duplication

to occur in a bad way. The 00 freed from only
loading L is close enough to the middle that this
byte can be targeted for duplication. It turned out
that the emulator doesn’t emulate the input slipping
quite accurately and we (dwangoAC) had to do a lot
of tedious trial and error testing to time the input
correctly.18 The offset between emulator and real
hardware turned out to be eight frames, which we
adjusted by adding eight frames of no input into the
file sent to the bot prior to exiting the menu.

3.9 Exploiting DMG→SGB com-
mand packets for gaining a
foothold on SNES

The Super Game Boy command packet protocol has
two nifty commands for gaining control of the SNES.
0x79 writes arbitrary data to an arbitrary memory
location, while 0x91 sets the NMI vector and jumps
to an arbitrary address. Both commands are real,
documented command packets; they are not undoc-
umented debug commands.

Since the Stage 2 executing on the DMG is so
small we needed to minimize the number of pack-
ets required. The SNES’s controller registers are
memory-mapped I/O registers that automatically
update each video frame when enabled. It is possible
to execute code from those registers but it isn’t par-
ticularly easy to do so, largely because it is very un-
safe to execute anything from those registers when
they are in the middle of an update. (There are all
sorts of intermediate stages.)

The solution is to find some way for the SNES
CPU to waste time during that update elsewhere.
The NMI vector and the NMI handler are perfect
for this: when enabled, it starts running just before
the register starts updating, so we just need an NMI
handler that wastes somewhere between roughly 4
and 260 scanlines so it hits after the current NMI
returns but before the next NMI starts. Scanning
descriptions of various SNES I/O registers, a useful
one seems to be $4212, which has bit 7 set when
the console is performing a vertical retrace. The
NMI occurs immediately after the vertical retrace
starts and the retrace lasts for about 40 scanlines,
so waiting for $4212 bit 7 to clear works out per-
fectly. Since the retrace bit is bit 7 and the SNES
CPU happens to be in a mode where the A regis-

18Each blind test took about 5 minutes, as we had to play back the entire movie before reaching the point where we could
determine if it worked and we weren’t entirely certain it would work at all, but eventually we discovered the correct offset.

19Based on the setting of a flags register bit that selects between an 8– and 16–bit A register.
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ter is 8 bits wide,19 numbers with bit 7 set show as
negative, so it’s trivial to branch on those using BMI
instruction. Handily enough, the LDA instruction
that loads the memory address into the A register
sets the condition flags, so we can just loop around
that one instruction using BMI.

After the loop, we must return from the NMI.
This is done using the RTI instruction, so the final
NMI handler looks like:

1 loop :
AD 12 42 LDA $4212 ; Read 0x4212 .

3 30 FB BMI loop ; Loop while b i t 7 i s s e t .
40 RTI ; Return from NMI.

This handler trashes the A register, which is gen-
erally considered bad style, but we can get away
with doing that.

We send two packets; the first one writes six
bytes (AD 12 42 30 FB 40) into the memory ad-
dress 0x001800. This is the NMI routine.

79 ; Write Memory
2 00 18 00 ; Target Address

06 ; S i z e
4 AD 12 42 30 FB 40 ; Content

Figure 8 – Inception

The second one jumps to 0x004218 (which is the
start of the controller registers), with the NMI vec-
tor set to 0x001800 (which points to the routine we
just wrote).20

91 ; Jump
2 18 42 00 ; Jump Target

00 18 00 ; NMI Vector

3.10 Stage 3: From stable loop in au-
topoller registers to loading pay-
loads.

(480 bytes per second; 60 payload bytes per second.)
We have transferred control flow to controller

registers, but we aren’t done just yet. The controller
registers are only eight bytes in size, and normally
not all bits are even controllable. However, there are
some tricks we can play to control all the bits. First,
even though a standard SNES controller only has 12
buttons, the autopoller reads all 16 bits. Normally
the last four bits are controller type identification
bits. Since those bits are read from the controller,
the controller can set those bits to whatever it likes,
including changing those bits every frame. Second,
the last four bytes of the register are read from the
second data line that is normally not connected to
anything unless there is a multitap device. It isn’t
possible to just connect a multitap device whenever
we like as the game will softlock. Fortunately, it is
possible to just connect the second controller so that
it shares all the other pins (+5V, ground, latch and
clock), but use the second data pin instead the first.

These two tricks allow controlling all 128 bits in
the controller registers which gives us 8 bytes of data
per frame. While this is a huge improvement over
our Stage 1 effective data rate of a nibble per frame
it still only amounts to a datarate of 300 bytes per
frame because three of those 8 bytes need to be used
for looping in the controller registers, leaving only
five bytes usable. (Although, as you’ll see, only one
byte of payload data can be sent per frame.)

Specifically, to loop successfully in the controller
registers we need to wait for the NMI induced in-
terrupt in order to avoid the NMI happening at an
unpredictable instruction (because the NMI trashes
A) and then jump to the start of the controller reg-
ister. Then there is issue that NMI is not initially

20We considered putting the NMI code into the SGB packet receive buffer, which is a memory-mapped I/O register (and
presumably can be executed by the CPU). We decided against this since the SGB emulation in BSNES is quite questionable
and we didn’t know if it would work, largely due to the difficulty of testing it.
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enabled, even if the handler is set, so the first frame
has to enable the NMI handler. Fortunately, this
can be done rather compactly:

1 loop :
A9 81 LDA #$81

3 8D 00 42 STA $4200 ; Set 0x4200 = 0x81 (
au t opo l l e r enabled , IRQ disab led , NMI
enabled )

CB WAI
5 80 F8 BRA loop

Since the code is idempotent, this is good time to
switch from sending input in once per frame to send-
ing input in once per latch poll. The way the SGB
BIOS polls the controllers is completely crazy, often
polling more than once per frame, polling too many
bits, trying to poll but leaving the latch held high,
etc. Because this is a somewhat common problem
even in other games, the bot connected to the con-
troller ports has a mode where it synchronizes what
input to send based on the edge of each video frame
(i.e. 60ths of a second in a polling window) by keep-
ing track of how much time has elapsed; if the game
asks for input more than once on the same frame
we give it that frame’s input again until we know
it is time for the next frame’s polls, which means
we can follow the polling no matter how crazy it is.
The obvious tradeoff is that this mode is limited to
8 bytes per frame with 4 controllers attached, so we
need to switch the bot’s mode to one that is strictly
polling based, sending the next set of button presses
on each latch. Making that transition can be a bit
glitchy considering it was added as a firmware hack
but because this piece of code is idempotent we can
just spam the same input several times as we only
need it to hit in the range. This happens from frame
12117 to 12212 in the movie.

We now have a stable loop in the controller reg-
isters that we can use to poke some code into RAM.
The five bytes per frame is enough to write one byte
per frame into an arbitrary address in first 8kB of
the SNES’s RAM:

1 LDA #$xx
STA $yyyy

This assembles to five bytes, A9 xx 8D yy yy.
Finally, after the writes, we can use JML (four bytes)

to jump to the desired address. Since the DMG is
still playing some annoying tunes, the first order of
business is to try to crash it. Writing 00 to the clock
control/reset register at 0x6003 should do the trick
by stopping the DMG clock, and in fact this works
in the LSNES emulator, but on a real console the an-
noying tunes keep playing until the DMG corrupts
itself enough to crash completely.21

3.11 Stage 4: Increasing the datarate
even further.

(3840 bytes per second.)
One byte per frame is rather slow as it would take

us several minutes to write our payload at that speed
so we poke the following routine (Stage 4) that reads
8 bytes per frame from the autopoller registers and
writes it sequentially to RAM, starting from 0x1A00
until 0x1B1F into address 0x19000.

SEP #$30 ; Set 8−b i t A and X/Y
2 LDA #$01 ; Set 0x4200 = 0x01

; ( au t opo l l e r en , NMI d i s )
4 STA $4200

REP #$10 ; Set 16−b i t X/Y, keep A 8−b i t .
6 LDY #$1A00 ; Load address to wr i t e to .

wait_vblank_start :
8 LDA $4212 ;Wait u n t i l vblank s t a r t s .

BPL wait_vblank_start
10 wait_vblank_end :

LDA $4212 ;Wait u n t i l vblank ends , so the
12 ; new c o n t r o l l e r va lue a r r i v e s .

BMI wait_vblank_end
14 LDX #$4218 ; S ta r t address o f c o n t r o l l e r reg

.
LDA #$00 ; MVN cop i e s 16−b i t amount o f

bytes , even with A being 8 b i t .
16 XBA ; So ensure that the high b i t s are

zero .
LDA #$07 ; A = 7 , copy 8 bytes .

18 PHB ; MVN changes the data bank
register , so save i t .

MVN $7E , $00 ; Copy the 8 bytes from 0
x4218 to RAM. Y i s auto−incremented .

20 PLB ; Restore the data bank register .
CPY #$1B20 ; Have we reached 0x1820?

22 BNE wait_vblank_start ; I f no , wait a frame
and read again .

JML $7E1A08 ; Jump to read payload .

As machine code, e2 30 a9 01 8d 00 42 c2
10 a0 00 1a ad 12 42 10 fb ad 12 42 30 fb

21It’s not a surprise that it behaves differently in the emulator, as the SGB emulation accuracy in BSNES is questionable
in a lot of places; it’s possible that the emulator is triggered on a different edge of the clock than real hardware or something
similar. Regardless, on real hardware the DMG eventually crashes in a way that makes it stop producing sound and while it’s
about the equivalent of driving a car into a brick wall instead of hitting the brakes it at least gets the job done.
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a2 18 42 a9 00 eb a9 07 8b 54 7e 00 ab c0
20 1b d0 e4 5c 08 1a 7e.

Why jump to eight bytes after the start of the
payload? It turns out that code loads some junk
from what is previously in the controller registers
on the first frame, so we just ignore the first few
bytes and start the payload code afterwards. Eight
bytes per frame still isn’t fast enough, so the rou-
tine this code pokes into RAM is another loader rou-
tine that uses serial controller registers to read eight
bytes eight times per frame, for total of 64 bytes per
frame.

Let’s take a look at the Stage 5 payload:

1 ; 0000 => Current t r a n s f e r address .
; 0002 => Trans fe r end address .

3 ; 0004 => Blocks to t r a n s f e r .
; 0006 => Current t r a n s f e r bank .

5 ; 0008 => 0 : Trans fe r not in p rog r e s s .
; 1 : Trans fe r in p rog r e s s .

7 ; 000C => Blocks t r a n s f e r r e d .
; 0010 => Jump vecto r to next in chain .

9 ; 0020−0027 => Buf f e r
; 0080−00BF => Buf f e r .

11
Sta r t :

13 NOP ; 8 NOPs, for the junk at s t a r t .
NOP

15 NOP
NOP

17 NOP
NOP

19 NOP
NOP

21 SEI
LDA #$00 ; Autopol l o f f , NMI and IRQ o f f .

23 STA $4200

25 REP #$30 ; 16−b i t A/X/Y.

27 LDA #$0000 ; I n i t i a l l y no t r a n s f e r .
STA $0008

29
frame_loop :

31
SEP #$20

33 not_in_vblank : ; Wait u n t i l next vblank ends
LDA $4212

35 BPL not_in_vblank
in_vblank :

37 LDA $4212
BMI in_vblank

39 REP #$20

41 LDA #$0008
STA $0004

43 LDA #$0000
STA $000C

45
rx_block :

47 LDA #$0001
STA $4016

49 LDX #$0003
latch_high_wait :

51 DEX
BNE latch_high_wait

53 STZ $4016
LDX #$0004

55 latch_low_wait :
DEX

57 BNE latch_low_wait

59 LDA #$0000
STA $0020

61 STA $0022
STA $0024

Figure 9 – Now using four controllers!
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63 STA $0026

65 LDY #$0010
read_loop :

67 LDA $4016
PHA

69 ; Bit 0 => 0020 , Bit 1 => 0024 ,
; Bit 8 => 0022 , Bit 9 => 0026

71 BIT #$0001
BNE b0nz

73 LDA $0020
ASL A

75 BRA b0d
b0nz :

77 LDA $0020
ASL A

79 EOR #$0001
b0d :

81 STA $0020

83 PLA
PHA

85 BIT #$0002
BNE b1nz

87 LDA $0024
ASL A

89 BRA b1d
b1nz :

91 LDA $0024
ASL A

93 EOR #$0001
b1d :

95 STA $0024

97 PLA
PHA

99 BIT #$0100
BNE b8nz

101 LDA $0022
ASL A

103 BRA b8d
b8nz :

105 LDA $0022
ASL A

107 EOR #$0001
b8d :

109 STA $0022

111 PLA
BIT #$0200

113 BNE b9nz
LDA $0026

115 ASL A
BRA b9d

117 b9nz :
LDA $0026

119 ASL A
EOR #$0001

121 b9d :
STA $0026

123
DEY

125 BNE read_loop

127 ;Move the block from 0020 to i t s f i n a l p lace

LDA $000C
129 ASL A

ASL A
131 ASL A

CLC
133 ADC #$0080

TAY
135 LDX #$0020

LDA #$0007
137 MVN $00 , $00

139 ; Increment the counter at 000C,
; decrement the count at 0004 .

141 ; I f no more blocks , e x i t .
LDA $000C

143 INA
STA $000C

145 LDA $0004
DEA

147 STA $0004
BEQ exit_rx_loop

149 JMP rx_block
exit_rx_loop :

151
LDA $0008

153 BNE doing_trans f e r
; Okay , setup t r a n s f e r .

155 LDA $0082
CMP #$FF

157 BMI not_jump
; This i s jump , copy the address .

159 STA $12
LDA $0080

161 STA $10
BRA out

163 not_jump :
LDA $0080 ; S ta r t i ng address .

165 STA $0000
LDA $0082 ; Bank .

167 STA $0006
LDA $0084 ; Ending address .

169 STA $0002

171 ; Se l f−modify the move .
LDX #move_instruction

173 LDA $0006
AND #$FF

175 STA $01 ,X

177 ; Enter t r a n s f e r .
LDA #$0001

179 STA $0008

181 ; See you next frame .
JMP no_reset_trans fe r

183
do ing_trans f e r :

185
; Copy the s t u f f to i t s f i n a l p lace in WRAM.

187 LDY $0000
LDX #$0080

189 LDA #$003F
PHB

191 move_instruction :
MVN $40 , $00 ; Bogus bank , w i l l be
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modi f i ed .
193 PLB

TYA
195 STA $0000

CMP $0002
197 BNE no_reset_trans fer

STZ $0008 ; End t r a n s f e r .
199 no_reset_trans fe r :

; Next frame .
201 JMP frame_loop

out :
203 JMP [ $10 ]

3.12 Stage 5: Transfers of data in
blocks with headers.

(3,840 bytes per second.)
This routine is rather complex, so let’s review

some of its trickier parts.
The serial protocol works by first setting the

latch bit (bit 0) in 0x4016, then clearing it, then
reading the appropriate number of times from
0x4016 (port #1) and 0x4017 (port #2). Bit 0 of
the read result is the first data line value, while bit
1 is the second data line value. After each read, the
line is automatically clocked so the next bit is read.
The two port latch lines are connected together; bit
0 of 0x4016 controls both.

The bot is slow, so we wait after setting/clearing
the latch bit. We properly reassemble the input in
the usual order of the controller registers, since we
have CPU time available to do that. Since we read
16-bit quantities, port 0x4017 is read as high 8 bits,
so the data lines there appear as bits 8 and 9.

To handle large payloads, the payload is divided
into blocks with headers. Each header tells where
the payload is to be written, or, if it is the last block,
where to begin execution.

The routine uses self-modifying code: The source
and destination banks in MVN are fixed in code, but
this code is dynamically rewritten to refer to correct
target bank.

3.13 Automating the Movie Creation
Since manually editing, recompiling and transform-
ing inputs gets old very fast when iterating payload
ROMs, tools to automate this are very useful. This
is the whole reason for having Stage 5 use block
headers. Furthermore, to not have one person do-
ing the work every time, it’s helpful to have a tool
that even script-kiddies can run. The tool to do this

is a Lua script that runs inside the emulator (The
LSNES emulator has built-in support for running
Lua scripts, with all sorts of functions for manipu-
lating the emulator.)

1 d o f i l e ( "sgb−a r b i t r a r yw r i t e . lua " ) ;

3 make_movie = func t i on ( f i l ename )
write_sgb_data ( " s tage4 . dat" ) ;

5 write_8bytes_data ( " s tage5 . dat" ) ;
write_xfer_block ( f i l ename , 0x8000 , 0

x7E8000 , 0x4000 , 8) ;
7 write_xfer_block ( f i l ename , 0x10000 ,

0x7F8000 , 0x7A00 , 8) ;
write_jump_block (0 x7E8051 , 8) ;

9 p r i n t ( "Done" ) ;
end

This code, the main Lua script, refers to four
external files. “stage4.dat” contains the memory
writes to load the Stage 4 payload from Section 3.11
while executing in the controller registers.

This file contains the Stage 4 payload, plus the
ill-fated attempt to shut up the DMG. (As noted
previously, it dies on its own later.) The first line
containing 0x001900 is the address to jump to after
all bytes are written.

2) “stage5.dat”, which is the machine code cor-
responding to the Stage 5 loader.

3) A filename taken as a parameter, which is the
payload ROM to use. As you can see, the Lua script
fixes the memory mappings, but this is okay, as those
are not difficult to modify.

The specified memory mappings copy a sixteen
kilobyte byte region starting from file offset 0x8000
into 0x7E8000, and the 0x7A00 byte region start-
ing from offset 0x10000 into 0x7F8000. (The first
32kB is assumed to contain initialization code for
stand-alone testing, but we don’t care about that.)

4) “sgb-arbitrarywrite.lua”, which is just a
function library.

−−sgb−a r b i t r a r yw r i t e . lua
2 l o = func t i on ( a ) return b i t . band (a , 0xFF) ;

end
mid = func t i on ( a ) return b i t . band ( b i t .

l r s h i f t ( a , 8) , 0xFF) ; end
4 h i = func t i on ( a ) return b i t . band ( b i t . l r s h i f t

( a , 16) , 0xFF) ; end

6 s e t8 = func t i on ( obj , port , c o n t r o l l e r , index
, va l )

for i =0,7 do obj : set_button ( port ,
c o n t r o l l e r , index + i , b i t . t e s t_a l l ( b i t .
l s h i f t ( val , i ) , 128) ) ; end

8 end
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10
add_frame=func t i on (a , b , c , d , e , f , g , h ,

sync )
12 l o c a l frame = movie . blank_frame ( ) ;

frame : set_button (0 , 0 , 0 , sync ) ;
14 s e t8 ( frame , 1 , 0 , 0 , b ) ;

s e t8 ( frame , 1 , 0 , 8 , a ) ;
16 s e t8 ( frame , 1 , 1 , 0 , f ) ;

s e t8 ( frame , 1 , 1 , 8 , e ) ;
18 s e t8 ( frame , 2 , 0 , 0 , d ) ;

s e t8 ( frame , 2 , 0 , 8 , c ) ;
20 s e t8 ( frame , 2 , 1 , 0 , h ) ;

s e t8 ( frame , 2 , 1 , 8 , g ) ;
22 movie . append_frame ( frame ) ;

end
24

write_sgb_data = func t i on ( f i l ename )
26 l o c a l jump_address = n i l ;

l o c a l f i l e , e r r = i o . open ( f i l ename ) ;
28 i f not f i l e then e r r o r ( e r r ) ; end

for i in f i l e : l i n e s ( ) do
30 i f i == "" then

e l s e i f not jump_address then
32 jump_address = tonumber ( i ) ;

else
34 l o c a l a , b = s t r i n g . match ( i , "(%w+)%s

+(%w+)" ) ;
a = tonumber ( a ) ;

36 b = tonumber (b) ;
add_frame (0xA9 , b , 0x8D , l o ( a ) , mid ( a )

, 0xCB, 0x80 , 0xF8 , t rue ) ;
38 end

end
40 add_frame (0x5C , l o ( jump_address ) , mid (

jump_address ) , h i ( jump_address ) , 0 , 0 , 0
x80 , 0xF8 , t rue ) ;

f i l e : c l o s e ( ) ;
42 end

44 write_8bytes_data = func t i on ( f i l ename )
l o c a l f i l e , e r r = i o . open ( f i l ename ) ;

46 i f not f i l e then e r r o r ( e r r ) ; end
while t rue do

48 l o c a l data = f i l e : read (8 ) ;
i f not data then break ; end

50 l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte ( data , 1 , 8) ;
add_frame (a , b , c , d , e , f , g , h , t rue ) ;

52 end
f i l e : c l o s e ( ) ;

54 end

56 write_xfer_block = func t i on ( f i l ename ,
f i l e o f f s e t , t a rge taddre s s , s i z e , speed )

l o c a l f i l e , e r r = i o . open ( f i l ename ) ;
58 i f not f i l e then e r r o r ( e r r ) ; end

f i l e : seek ( " s e t " , f i l e o f f s e t ) ;
60 while s i z e % (8 ∗ speed ) ~= 0 do s i z e =

s i z e + 1 ; end
l o c a l endaddr = b i t . band ( t a r g e t add r e s s +

s i z e , 0xFFFF) ;
62 −−Write the header .

add_frame ( l o ( t a r g e t add r e s s ) , mid (
t a r g e t add r e s s ) , h i ( t a r g e t add r e s s ) , 0 , l o
( endaddr ) , mid ( endaddr ) , 0 , 0 , t rue ) ;

64 for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e ) ; end

66 −−Write ac tua l data .
for i = 0 , s i z e /8−1 do

68 l o c a l data = f i l e : read (8 ) ;
i f data == n i l then data = s t r i n g . char
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ; end

70 while #data < 8 do data = data . . s t r i n g
. char (0 ) ; end
l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte ( data , 1 , 8) ;

72 add_frame (a , b , c , d , e , f , g , h , i %

Figure 10 – Why should we wait for next frame? Go sub-frame! (in green)
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speed == 0) ;
end

74 f i l e : c l o s e ( ) ;
end

76
write_jump_block = func t i on ( address , speed )

78 add_frame ( l o ( address ) , mid ( address ) , h i (
address ) , 1 , 0 , 0 , 0 , 0 , t rue ) ;

for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e ) ; end

80 end

This script assumes that the loaded movie causes
the SNES to jump into controller registers and then
enable NMI, using the methods described earlier. It
appends the rest of the stages and payload to the
movie. Also, since it edits the loaded input, it is
possible to just load state near the point of gaining
control of the SNES and then append the payload
for very fast testing. (Otherwise it would take about
two minutes for it to reach that point when execut-
ing from the start.)

3.14 Stage 6: Twitch Chat Interface

After successfully transferring our payload, execu-
tion of the exploit payload (created by p4plus2) can
officially begin. There are three primary states to
the final payload: (1) Reset, (2) the Chat Interface,
and (3) a TASVideos Webview.

3.14.1 The Reset

Because much of the hardware state is either un-
known or unreliable at the point of control transfer
we need to initialize much of the system to a known
state. On the SNES this usually implies setting a
myriad of registers from audio to display state, but
also just as important is clearing out WRAM such
that a clean slate is presented to the payload. Once
we have a cleared state it is possible to perform
screen setup.

In the initial case we set the tile data and tilemap
VRAM addresses and set the video made to 0x01,
which gives us two layers of 4–bit depth (Layers 1
and 2) and a single layer of 2–bit depth, Layer 3.

Layer 1 is used as a background which displays
the chat interface, while Layer 2 is used for emoji
and text. Layer 3 is unused. A special case for the
text and emoji however is Red’s own text which is
actually present on the sprite layer, allowing code to
easily update that text independently.

3.14.2 The Chat Interface

Now that we have the screen itself set up and able
to run we need to stream data from Twitch chat
to the SNES. But we only have 64 bytes per frame
available to support emoji as well as the alphabet,
numbers, various symbols, and even special triggers
for controlling the payload execution. This complex-
ity quickly bogged down our throughput per frame,
so we created special encodings for performance! On
average the most common characters will be a-z in
lower case, which conveniently fit into a 5–bit en-
coding with several more character to spare.

The SNES has both 16–bit and 8–bit modes, so
in 16–bit mode we can easily process three charac-
ters with a bit to spare! But what about the rest of
our character space? Well, we have a single bit re-
maining and can set it to allow the remaining char-
acters to be alternatively encoded. The alternate
encoding allowed for two 7 bit characters, with an
additional toggle bit on the second character.

BXXXXXXX XXXXXXXX
2 i f (E) goto spec ia l_encod ing

i f ( !E) goto normal_encoding
4 normal_encoding :

0AAAAABB BBBCCCCC
6 A = f u l l cha rac t e r 1

B = f u l l cha rac t e r 2
8 C = f u l l cha rac t e r 3

spec ia l_encod ing :
10 1XXXXXXX SXXXXXXX

i f (S) goto special_command
12 i f ( ! S ) goto read_two_characters

read_two_characters :
14 1AAAAAAA 0BBBBBBB

A = f u l l cha rac t e r 1
16 B = f u l l cha rac t e r 2 ( used for

Red ’ s t ex t )
special_command :

18 1AAAAAAA 1BBBBBBB
A = f u l l cha rac t e r 1

20 B = Command byte
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rebelofold: WUT
55: whaaat
Hi Mom!!
georgemichaels: we're the twitch
 chat
gallerduse: HI COUCH
kyiroo:   //
ch1ll1e: 
zoranthebear: WOOOOOO
ederarm: Lmao
liontheturtle: OMFG
devinlock: Oh my 
wallydrag: HI MOM
toastypls: MATRIX dear 

molten-: WHAT
asdyyy: start9  dor: LOL
gadwin100: rekt
andykarate: fdg
tovargent: 
soulroarn: WHAT?
lukeskywars: UP
k1dsmirk: heloooo!!!!
love-struck-: HULLO
HI MOM!
  anthecaiun:

Chat

Figure 11 – Twitch chat!

The most important command was EE, cho-
sen very arbitrarily, which meant “transition state.”
The state transition would then toggle between the
TASVideos website and chat interface. Also worth
noting is that any character with a value of 00 was
considered a null character and was not displayed
for synchronization purposes.

3.15 The Website

The website itself is not very complicated, rather
just interesting to mention to take advantage of
mode 0x03 which allowed us to render a 256–color
image, rather than the standard 16–color images
from the prior section. The only caveat was that we
had to make a quick tool to remove duplicate tiles to
optimize the tile data to fit in VRAM. Background
colors were controlled by tweaking the palette data
rather than the image itself, as the SNES is very
poor at manipulating raw tile data due to its planar
pixel format.

3.16 Outside of the SNES

The bot was connected to the console through the
controller ports and a single wire going to the reset
pin on the expansion board, meaning that from an

external perspective the hardware was completely
unmodified. The bot itself was connected by a USB
serial interface to a MacBook Pro running Linux.
The source of the button presses being sent to the
bot was in the form of a continuous bitstream repre-
senting the state of all buttons for each frame. Once
the payload was fully written and the Twitch chat
interface was complete the bitstream transitioned
from being pre-created movie content to a bitstream
in the format the chat interface payload needed it
in, with 5-bit and 7-bit encodings for characters and
emoji. This was controlled by the python scripts22
that relied on a script to identify when Red, the
player inside of the Pokémon Red game, said var-
ious things. The script also triggered things that
TASBot, the robot holding the replay device, would
say via the use of espeak, which allowed us to create
a conversation between TASBot and Red.

Finally, as part of the script we predefined pe-
riods where we would “deface” the TASVideos web-
site by changing it to different colors; this worked
by showing an image on the SNES as well as liter-
ally defacing the actual website. Finally, the script
was built with the ability to send commands to a
serial-controlled camera, but truth be told we ran
out of time to test it so we used a bit of stage magic
to pretend like Twitch chat was interacting with the
camera by typing directions to move it, and we had
a helpful volunteer running the camera for us.

3.17 Live Performance
These exploits were unveiled at AGDQ 2015. They
were streamed live to over 100,000 people on Jan-
uary 4th with a mangled Python script that didn’t
trigger the text for Red properly, then again on Jan-
uary 11th with the full payload. The run was very
well received and garnered press coverage from Ars
Technica23 among others and resulted in substan-
tially more interest in TASBot and the art of arbi-
trary code execution on video games than had ex-
isted previously. Most importantly, the TAS por-
tions of the marathon where the exploit was fea-
tured helped raise over fifty thousand dollars di-
rectly to the Prevent Cancer Foundation. Overall,
the project was a resounding success, well worth the
substantial effort that our team put into it.

22https://github.com/TheAxeMan301/PptIrcBot
23Pokémon Plays Twitch: How a Robot got IRC Running on an Unmodified SNES by Kyle Orland
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