
“Academics should just marry Turing Completeness already!”

—the grugq

2 From Newton to Turing, a Happy Family
by Pastor Manul Laphroaig D.D.

When engineers first gifted humanity with horse-
less carriages that moved on rails under their own
power, this invention, for all its usefulness, turned
out to have a big problem: occasional humans and
animals on the rails. This problem motivated many
inventors to look for solutions that would be both
usable and effective.

Unfortunately, none worked. The reason for
this is not so easy to explain—at least Aristotelian
physics had no explanation, and few scientists till
Galileo’s time were interested in one. On the one
hand, motion had to brought on by some force and
tended to kinda barrel about once it got going; on
the other hand, it also tended to dissipate eventu-
ally. It took about 500 years from doubting the
Aristotelian idea that motion ceased as soon as its
impelling force ceased to the first clear pronounce-
ment that motion in absence of external forces was
a persistent rather than a temporary virtue; and an-
other 600 for the first correct formulation of exactly
what quantities of motion were conserved. Even so,
it took another century before the mechanical con-
servation laws and the actual names and formulas
for momentum and energy were written down as we
know them.

These days, “conservation of energy” is supposed
to be one of those word combinations to check off
on multiple-choice tests that make one eligible for
college.1 Yet we should remember that the steam
engine was invented well before these laws of clas-
sical mechanics were made comprehensible or even
understood at all. Moreover, it took some further
40–90 years after Watt’s ten-horsepower steam en-
gine patent to formulate the principles of thermody-
namics that actually make a steam engine work—by
which time it was chugging along at 10,000 horse-
power, able to move not just massive amounts of
machinery but even the engine’s own weight along
the rails, plus a lot more.2

All of this is to say that if you hear scientists
doubting how an engineer can accomplish things
without their collective guidance, they have a lot
of history to catch up with, starting with that thing
called the Industrial Revolution. On the other hand,
if you see engineers trying to build a thing that just
doesn’t seem to work, you just might be able to point
them to some formulas that suggest their energies
are best applied elsewhere. Distinguishing between
these two situations is known as magic, wisdom, ex-
treme luck, or divine revelation; whoever claims to
be able to do so unerringly is at best a priest,3 not
a scientist.

– — — – — — — — – — –

1Whether one actually understands them or not—and, if you value your sanity, do not try to find if your physics teachers
actually understand them either. You have been warned.

2Not that stationary steam engines were weaklings either: driving ironworks and mining pumps takes a lot of horses.
3Typically, of a religion that involves central planning and state-run science. This time they’ll get it right, never fear!

4



There is an old joke that whatever activity needs
to add “science” to its name is not too sure it is one.
Some computer scientists may not take too kindly
to this joke, and point out that it’s actually the
word “computer” that’s misleading, as their science
transcends particular silicon-and-copper designs. It
is undeniable, though, that hacking as we know it
would not exist without actual physical computers.

As scientists, we like exhaustive arguments: ei-
ther by full search of all finite combinatorial pos-
sibilities or by tricks such as induction that look
convincing enough as a means of exhausting infinite
combinations. We value above all being able to say
that a condition never takes place, or always holds.
We dislike the possibility that there can be a situa-
tion or a solution we can overlook but someone may
find through luck or cleverness; we want a yes to
be a yes and a no to mean no way in Hell. But ei-
ther full search or induction only apply in the world
of ideal models—call them combinatorial, logical, or
mathematical—that exclude any kinds of unknown
unknowns.

Hence we have many models of computation:
substituting strings into other strings (Markov algo-
rithms), rewriting formulas (lambda calculus), au-
tomata with finite and infinite numbers of states,
and so on. The point is always to enumerate all fi-
nite possibilities or to convince ourselves that even
an infinite number of them does not harbor the ones
we wish to avoid. The idea is roughly the same as
using algebra: we use formulas we trust to reason
about any and all possible values at once, but to do
so we must reduce reality to a set of formulas. These
formulas come from a process that must prod and
probe reality; we have no way of coming up with
them without prodding, probing, and otherwise ex-
perimenting by hunch and blind groping—that is, by
building things before we fully understand how they
work. Without these, there can be no formulas, or
they won’t be meaningful.

So here we go. Exploits establish the variable
space; “science” searches it, to our satisfaction or
otherwise, or—importantly to save us effort—asserts
that a full and exhaustive search is infeasible. This
may be the case of energy conservation vs. trying
to construct a safer fender—or, perhaps, the case
of us still trying to formulate what makes sense to

attempt.
That which we call the “arms race” is a part of

this process. With it, we continually update the
variable spaces that we wish to exhaust; without it,
none of our methods and formulas mean much. This
brings us to the recent argument about exploits and
Turing completeness.

Knowledge is power.4 In case of the steam en-
gine, the power emerged before the kind of knowl-
edge called “scientific” (if one is in college) or “basic”
(if one is a politician looking to hitch a ride—because
actual science has a tradition of overturning its own
“basics” as taught in schools for at least decades if
not centuries). In any case, the knowledge of how
to build these engines was there before the knowl-
edge that actually explained how they worked, and
would hardly have emerged if these things had not
been built already.

4The question of whether that which is not power is still knowledge is best left to philosophers. One can blame Nasir al-Din
al-Tusi for explaining the value of Astrology to Khan Hulagu by dumping a cauldron down the side of a mountain to wake up
the Khan’s troops and then explaining that those who knew the causes above remained calm while those who didn’t whirled in
confusion below—but one can hardly deny that being able to convince a Khan was, in fact, power. Not to mention his horde.
Because a Khan, by definition, has a very convincing comeback for “Yeah? You and what horde?”

5



Our very own situation, neighbors, is not unlike
that of the steam power before the laws of ther-
modynamics. There are things that work (pump
mines, drive factories), and there are official ways of
explaining them that don’t quite work. Eventually,
they will merge, and the explanations will catch up,
and will then become useful for making things that
work better—but they haven’t quite yet, and it is
frustrating.

This frustration is understandable. As soon
as academics rediscovered a truly nifty kind of
exploit programming, they not just focused on
the least practically relevant aspect of it (Tur-
ing completeness)—but did so to the exclusion of
all other kinds of niftyness such as information
leaks, probabilistic programming (heap feng-shui
and spraying), parallelism (cloning and pinning of
threads to sap randomization), and so on. That
focus on the irrelevant to the detriment of the rele-
vant had really rankled. It was hard to miss where
the next frontier of exploitation’s hard programming
tasks and its next set of challenges lay, but oh boy,

did the academia do it again.
Yet it is also clear why they did it. Academic

CS operates by models and exhaustive searches or
reasoning. Its primary method and deliverable is
exhaustive analysis of models, i.e., the promise that
certain bad things never happen, that all possible
trajectories of a system have been or can be enu-
merated.

Academia first saw exploit programming when
it was presented to it in the form of a model; prior
to that, their eyes would just slide off it, because it
looked “ad-hoc”, and one can neither reason about
“ad-hoc” nor enumerate it (at least, if one wants
to meet publication goals). When it turned out it
had a model, academia did with it what it normally
does with models: automating, tweaking, searching,
finding their theoretical limits, and relating them to
other models, one paper at a time.5

This is not a bad method; at least, it gave us
complex compilers and CPUs that don’t crumble
under the weight of their bugs.6 Eventually we will
want the kind of assurances this method creates—
when their models of unexpected execution are com-
plete enough and close enough to reality. For now,
they are not, and we have to go on building our en-
gines without guidance from models, but rather to
make sure new models will come from them.

Not that we are without hope. One only has
to look to Grsecurity/PaX at any given time to
see what will eventually become the precise stuff of
Newton’s laws for the better OS kernels; similarly,
the inescapable failure modes of data and program-
ming complexity will eventually be understood as
clearly as the three principles of thermodynamics.
Until then our best bet is to build engines—however
unscientific—and to construct theories—however re-
moved from real power—and to hope that the en-
gineering and the science will take enough notice of
each other to converge within a lifetime, as they have
had the sense to do during the so-called Industrial
Revolution, and a few lucky times since.

And to this, neighbors, the Pastor raises not one
but two drinks—one for the engineering orienting the
science, and one for the science catching up with the
knowledge that is power, and saving it the effort of
what cannot be done—and may they ever converge!
Amen.

5And some of these papers were true Phrack-like gems that, true to the old-timey tradition, explained and exposed surprising
depths of common mechanisms: see, for example, SROP and COOP.

6While, for example, products of the modern web development “revolution” already do, despite being much less complex
than a CPU.

6


