
11 Naughty Signals; or, the Abuse of a Raspberry Pi
by Russell Handorf

There are a lot of different projects that have
rejuvenated interest in HAM Radio, more notably
Software Defined Radio (SDR). The more promi-
nent projects and products are the USRP by Ettus
Research, BladeRF by Nuand, and the HackRF by
Mike Ossmann (in the order from the most expen-
sive to least expensive). These radios vary in capa-
bility and have their own distinct utility, depending
on what radio communication you’d like to study;
however, if all you are specifically interested in is re-
ceiving a simplistic signal, then the Realtek SDR is
typically the best and cheapest choice. This article
will show you how to combine a Realtek SDR and
a Raspberry Pi into a poor man’s software defined
radio tool for exploring how to receive and transmit
in related radio systems.

11.1 Bandpass Filter

It is very important to have and to use a band-
pass filter when using the Raspberry Pi as an FM
transmitter, because PiFM is essentially a square
wave generator. This means that you’ll have a lot
of harmonics as depicted in Figure 21. While the
direct operational frequency range of PiFM is ap-
proximately 1 MHz to 250 MHz, the harmonics are
still strong enough to reach frequencies below 1 MHz
and as high as 500 MHz.

Because of these square wave characteristics, a
mechanical SAW filter would be ideal to be able to
control the frequencies you wish to transmit. How-
ever, there filters can set you back more than the
Raspberry Pi, and may be hard to come by, unless
there’s a neighborly Ham Radio Outlet near you. So
you may have to make your own band-pass filter.

To make your own high band and/or low band
pass filters, you can assemble them based on the
schematic in Figure 19.54 Parts for the various am-
ateur bands are listed in Figure 20.

11.2 Raspberry Pi FM Transmitter

For over a year now, it has been documented how
to turn the Raspberry Pi into an FM transmitter
by using the PiFM software.55 Richard Hirst first
demonstrated this technique in some C and Python

code that generated spread-spectrum clock signals
to output FM on GPIO pin #4. Oliver Mattos and
Oskar Weigl have since enhanced PiFM to add more
capabilities.

Be aware, however, that this technique has an-
other problem beyond bleeding RF and having to
use filters. Namely, the transmitter doesn’t shut
down gracefully after you quit PiFM. Therefore,
you’ll need a script to silence the transmission. We’ll
call it pi-shutdown.sh in the various examples that
follow.

1 #/bin /bash
#pi−shutdown . sh

3 touch /tmp/empty && /home/ pi /pifm /tmp/empty

11.3 AFSK
Audio Frequency Shift Keying (AFSK) is simply
a method to modulate digital data as an analogue
tone; you’ll certainly recognize this as the tones your
modem made. AFSK characteristically represents 1
as a “mark” and 0 as a “space”. While not fast,
AFSK does work very well in many applications
where data is communicated over a consistent radio
frequency. Because of these attributes, AFSK is fre-
quently used for radio communications in industrial
applications, embedded systems, and more. Using
a program called minimodem, you’ll be easily able
to receive and transmit AFSK with a Realtek SDR
and a Raspberry Pi. Marc1 from kprod.eu demon-
strated some very simple techniques for doing so,
which a few other neighbors have been tweaked and
updated in the examples to follow.

To receive 1200 baud AFSK transmissions, a
one-line script is all that’s needed:

1 rtl_fm −f 146 .0M −M wbfm −s 200000 \
−r 48000 −o 6 \

3 | sox −traw −r48k −es −b16 −c1 −V1 − \
−twav − \

5 | minimodem −−rx −8 1200

What’s happening here is that the program
rtl_fm is tuned to 146.0 MHz, sampling at 200,000

54http://www.kitsandparts.com/univlpfilter.php
55https://github.com/rm-hull/pifm

55

samples per second and converting the output at a
sample rate of 48000 Hz. The output from this is
sent to sox, which is converting the audio received
to the WAV file format. The output from sox is
then sent to minimodem, which is decoding the WAV
stream at 1200 baud, 8 bit ASCII.

Transmitting an AFSK signal is just as easy:

1 echo "knock knock . . . : `date +%c `" \
| minimodem −−tx −f −8 1200 \

3 −f /home/ pi / sentence . wav
/home/ pi /pifm /home/ pi / sentence . wav \

5 146 .0 48000
/home/ pi /pi−shutdown . sh

11.4 Other Transmission Examples
Because of the scriptability and simplicity of PiFM,
other forms of transmissions become easily achiev-
able too.

Morse Code (CW)

Either done by playing a pre-made audio file with
dits and dahs, or by using the cwwav program
written by Thomas Horsten to output directly to
PiFM.56

echo h e l l o world \
2 | cwwav −f 700 −w 20 \

−o /home/ pi /morse . wav
4 /home/ pi /pifm /home/ pi /morse . wav \

146 .0 48000
6 /home/ pi /pi−shutdown . sh

Numbers Station

A numbers station is typically a government-owned
transmitter that sends encoded messages to spies,
operators, or employees of that said government
anywhere in the world, where the messages are typ-
ically one way and seemingly random. The script
below mimics the Cuban numbers station identified
as HM01.57 What is interesting about it is that the
data it sends is encoded with a common HAM Ra-
dio protocol called RDFT. Transmitting RDFT on a
Raspberry Pi can be difficult, therefore using a sim-
ple FM transmission of THOR8 or QPSK256 should
be adequate; using FLDIGI should be of great help
to create these messages.

A script can easily speak a series of words into
the air by piping them into the text2wave utility:

system ("echo $text | text2wave −F 22050 − "
2 " | /home/ pi /pifm − 144 22050") ;

DVBT with Metadata

One common practice for those who work with the
RTL dongle is to remove to remove the DVB-T
digital television kernel module. To receive this
challenge, however, you will need to re-enable that
module. To transmit it, you’ll need hardware from
Hides,58 which can be had for a very low cost. The
script below works with the UT-100C.

56https://github.com/Kerrick/cwwav
57http://www.qsl.net/py4zbz/eni.htm
58http://www.hides.com.tw/product_cg74469_eng.html

Figure 19: Bandpass Filter for Reducing PiFM Harmonics

56

modprobe usb−i t 950x
2 mkf i fo ~/desktop

avconv −f x11grab −s 1024 x768 \
4 −f ramerate 30 − i : 0 . 0 \

−vcodec l i bx264 −s 720x576 \
6 −f mpegts \

−mpegts_original_network_id 1 \
8 −mpegts_transport_stream_id 1 \

−mpegts_service_id 1 \
10 −metadata \

se rv i c e_prov ide r="FCC CALL SIGN" \
12 −metadata \

service_name="Dia l i n f o r Do l l a r s ! " \
14 −muxrate 3732k −y ~/desktop &

t s r f s e nd ~/desktop 0 730000 6000 4 \
16 1/2 1/4 8 0 0 &

SSTV

Gerrit Polder developed a simple means of convert-
ing an image into a SSTV signal and then sending
it out via the PiFM utility. Using his program, PiS-
STV, command line transmissions of SSTV broad-
casts with the Raspberry Pi are easy to achieve with-

out the need for a graphical environment.

11.5 Howdy to the caring Neighbors

Thanks to the PiFM program, there are many
portable options allowing HAM operators, experi-
menters, and miscreants to explore and butcher the
radio waves on the cheap. The main goal of this ar-
ticle is to document the work of many friendly folks
in this arena, gathering in one place the information
currently scattered across the bits and bobs of the
Internet. Owing to the brilliant hacks of these neigh-
bors, it should become apparent why any radio nut
should consider having a Raspberry Pi armed with
a filter and some code. While out of scope for the
article, it should also become clear how you too can
make a very inexpensive and portable HAM station
for a large variety of digital and analog modes.

I’d like to extend a warm, hearty, and, even-
tually, beer-supplemented thank-you to Dragorn,
Zero_Chaos, Rick Mellendick, DaKahuna, Justin
Simon, Tara Miller, Mike Ossmann, Rob Ghilduta,
and Travis Goodspeed for their direct support.

Band C1, C4 C2, C3 L1, L3 L2
λ Meters

160 820 2200 4.44µH, 20T, 16′′ 5.61µH, 23T, 18′′

80 470 1200 2.43µH, 21T, 16′′ 3.01µH, 24T, 18′′

40 270 680 1.38µH, 18T, 14′′ 1.70µH, 20T, 15′′

30 270 560 1.09µH, 16T, 12′′ 1.26µH, 17T, 13′′

20 180 390 0.77µH, 13T, 11′′ 0.90µH, 14T, 11′′

17 100 270 0.55µH, 11T, 9′′ 0.68µH, 12T, 10′′

15 82 220 0.44µH, 11T, 9′′ 0.56µH, 12T, 10′′

12 100 220 0.44µH, 11T, 9′′ 0.52µH, 12T, 10′′

10 56 150 0.30µH, 9T, 8′′ 0.38µH, 10T, 9′′

Figure 20: Filter Bill of Materials

57

Figure 21: PiFM Harmonic Emissions

58

