
10 Backdoors up my Sleeve
by JP Aumasson

SHA-1 was designed by the NSA and uses
the constants 5a827999, 6ed9eba1, 8f1bbcdc, and
ca62c1d6. In case you haven’t already noticed,
these are hex representations of 230 times the square
roots of 2, 3, 5, and 10.

NIST’s P-256 elliptic curve was also designed by
the NSA and uses coefficients derived from a hash of
the seed c49d3608 86e70493 6a6678e1 139d26b7
819f7e90. Don’t look for decimals of square roots
here; we have no idea where this value comes from.

Which algorithm would you trust the most?
Right, SHA-1. We don’t know why 2, 3, 5, 10 rather
than 2, 3, 5, 7, or why the square root rather than
the logarithm, but this looks more convincing than
some unexplained random-looking number.

Plausible constants such as
√

2 are often called
“nothing-up-my-sleeve” (NUMS) constants, mean-
ing that there is a kinda-convincing explanation of
their origin. But it isn’t impossible to backdoor an
algorithm with only NUMS constants, it’s just more
difficult.

There are basically two ways to create a NUMS-
looking backdoored algorithm. One must either (1)
bruteforce NUMS constants until one matches the
backdoor conditions or (2) bruteforce backdoor con-
stants until one looks NUMS.

The first approach sounds easier, because brute-
forcing backdoor constants is unlikely to yield a
NUMS constant, and besides, how do you check that
some constant is a NUMS? Precompute a huge table
and look it up? In that case, you’re better off brute-
forcing NUMS constants directly (and you may not
need to store them). But in either case, you’ll need
a lot of NUMS constants.

I’ve been thinking about this a lot after my re-
search on malicious hash functions. So I set out
to write a simple program that would generate a
huge corpus of NUMS-ish constants, to demonstrate
to non-cryptographers that “nothing-up-my-sleeve”
doesn’t give much of a guarantee of security, as
pointed out by Thomas Pornin on Stack Exchange.

The numsgen.py program generates nearly two
million constants, while I’m writing this.52 Noth-
ing new nor clever here; it’s just about exploiting
degrees of freedom in the process of going from a

plausible seed to actual constants. In that PoC pro-
gram, I went for the following method:

1. Pick a plausible seed

2. Encode it to a byte string

3. Hash it using some hash function

4. Decode the hash result to the actual constants

Each step gives you some degrees of freedom, and
the game is to find somewhat plausible choices.

As I discovered after releasing this, DJB and oth-
ers did a similar exercise in the context of manip-
ulated elliptic curves in their “BADA55 curves” pa-
per,53 though I don’t think they released their code.
Anyway, they make the same point: “The BADA55-
VPR curves illustrate the fact that ‘verifiably pseu-
dorandom’ curves with ‘systematic’ seeds generated
from ‘nothing-up-my-sleeve numbers’ also do not
stop the attacker from generating a curve with a
one-in-a-million weakness.” The two works obvi-
ously overlap, but we use slightly different tricks.

10.1 Seeds

We want to start from some special number, or,
more precisely, one that will look special. We cited
SHA-1’s use of

√
2,
√

3,
√

5,
√

10, but we could have
cited

· π used in ARIA, BLAKE, Blowfish,

· MD5 using “the integer part of 4294967296 ×
abs(sin(i))”,

· SHA-1 using 0123456789abcdeffedcba98-
76543210f0e1d2c3,

· SHA-2 using square roots and cube roots of
the first primes,

· NewDES using the US Declaration of Indepen-
dence,

· Brainpool curves using SHA-1 hashes of π and
e.

52https://github.com/veorq/numsgen
unzip pocorgtfo08.zip numsgen.py

53http://safecurves.cr.yp.to/bada55.html
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Special numbers may thus be universal math
constants such as π or e, or some random-looking
sequence derived from a special number: small inte-
gers such as 2, 3, 5, or some number related to the
design (like the closest prime number to the security
level), or the designer’s birthday, or his daughter’s
birthday, etc.

For most numbers, functions like the square root
or trigonometric functions yield an irrational num-
ber, namely one that can’t be expressed as a frac-
tion, and with an infinite random-looking decimal
expansion. This means that we have an infinite
number of digits to choose from!

Let’s now enumerate some NUMS numbers. Ob-
viously, what looks plausible to the average user may
not be so for the experienced cryptographer, so the
notion of “plausibility” is subjective. Below we’ll re-
strict ourselves to constants similar to those used in
previous designs, but many more could be imagined
(like physical universal constants, text rather than
numbers, etc.). In fact, we’ll even restrict ourselves
to irrational numbers: π, e, ϕ = (1 +

√
5)/2 (the

golden ratio), Euler–Mascheroni’s γ, Apéry’s ζ(3)
constant, and irrationals produced from integers by
the following functions

· Natural logarithm, ln(x), irrational for any ra-
tional x > 1;

· Decimal logarithm, log(x), irrational unless
x = 10n for some integer n;

· Square root,
√
x, irrational unless x is a per-

fect square;

· Cubic root, 3
√
x, irrational unless x is a perfect

cube;

· Trigonometric functions: sine, cosine, and tan-
gent, irrational for all non-zero integers.

We’ll feed these functions with the first six
primes: 2, 3, 5, 7, 11, 13. This guarantees that
all these functions will return irrationals.

Now that we have a bunch of irrationals, which
of their digits do we record? Since there’s an infinite
number of them, we have to choose. Again, this pre-
cision must be some plausible number. That’s why
this PoC takes the first N significant digits—rather
than just the fractional part—for the following val-
ues of N : 42, 50, 100, 200, 500, 1000, 32, 64, 128,
256, 512, and 1024.

We thus have six primes combined with seven
functions mapping them to irrationals, plus six ir-
rationals, for a total of 48 numbers. Multiplying
by twelve different precisions, that’s 576 irrationals.
For each of those, we also take the multiplicative in-
verse. For the one of the two that’s greater than one,
we also take the fractional part (thus stripping the
leading digit from the significant digits). We thus
have in total 3× 576 = 1728 seeds.

Note that seeds needn’t be numerical values.
They can be anything that can be hashed, which
means pretty much anything: text, images, etc.
However, it may be more difficult to explain why
your seed is a Word document or a PCAP than if
it’s just raw numbers or text.

10.2 Encodings
Cryptographers aren’t known for being good pro-
grammers, so we can plausibly deny an awkward en-
coding of the seeds. The PoC tries the obvious raw
bytes encoding, but also ASCII of the decimal, hex
(lower and upper case), or even binary digits (with
and without the 0b prefix). It also tries Base64 of
raw bytes, or of the decimal integer.

To get more degrees of freedom you could use
more exotic encodings, add termination characters,
timestamps, and so on, but the simpler the better.

10.3 Hashes
The purpose of hashing to generate constants is at
least threefold.

1. Ensure that the constant looks uniformly ran-
dom, that it has no symmetries or structure. This
is, for example, important for the hash functions’
initial values. Hash functions can thus “sanitize”
similar NUMS by produce completely different con-
stants:

1 >>> hex ( int (math . tanh (5) ∗10∗∗16) )
' 0 x23861f0946f3a0 '

3 >>> sha1 (_) . hexd ige s t ( )
' b96cf4dcd99ae8aec4e6d0443c46fe0651a44440 '

5 >>> hex ( int (math . tanh (7) ∗10∗∗16) )
' 0x2386ee907ec8d6 '

7 >>> sha1 (_) . hexd ige s t ( )
' 7 c25092e3fed592eb55cf26b5efc7d7994786d69 '

2. Reduce the length of the number to the size of
the constant. If your seed is the first 1000 digits of
π, how do you generate a 128-bit value that depends
on all the digits?
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3. Give the impression of “cryptographic
strength”. Some people associate the use of cryptog-
raphy with security and confidence, and may believe
that constants generated with SHA-3 are safer than
constants generated with SHA-1.

Obviously, we want a cryptographic hash rather
than some fast-and-weak hash like CRC. A natural
choice is to start with MD5, SHA-1, and the four
SHA-2 versions. You may also want to use SHA-3
or BLAKE2, which will give you even more degrees
of freedom in choosing their version and parameters.

Rather than just a hash, you can use a keyed
hash. In my PoC program, I used HMAC–MD5 and
HMAC–SHA1, both with 3× 3 combinations of the
key length and value.

Another option, with even more degrees of free-
dom, is a key derivation—or password hashing—
function. My PoC applies PBKDF2–HMAC–SHA1,
the most common instance of PBKDF2, with: either
32, 64, 128, 512, 1024, 10, 100, or 1000 iterations; a
salt of 8, 16, or 32 bytes, either all-zero or all-ones.
That’s 48 versions.

The PoC thus tries 6 + 18 + 48 = 72 different
hash functions.

10.4 Decoding

Decoding of the hashes to actual constants depends
on what constants you want. In this PoC I just
want four 32-bit constants, so I only take the first

128 bits from the hash and parse them either as big-
or little-endian.

10.5 Conclusion
That’s all pretty simple, and you could argue that
some choices aren’t that plausible (e.g., binary en-
coding). But that kind of thing would be enough
to fool many, and most would probably give you
the benefit of the doubt. After all, only some
pesky cryptographers object to NIST’s unexplained
curves.

So with 1728 seeds, 8 encodings, 72 hash func-
tion instances, and 2 decodings, we have a total of
1728×8×72×2 = 1, 990, 656 candidate constants. If
your constants are more sophisticated objects than
just 32-bit words, you’ll likely have many more de-
grees of freedom to generate many more constants.

This demonstrates that any invariant in a crypto
design—constant numbers and coefficients, but also
operations and their combinations—can be manip-
ulated. This is typically exploited if there exists a
one in a billion (or any reasonably low-probability)
weakness that’s only known to the designer. Var-
ious degrees of exclusive exploitability (“NOBUS”)
may be achieved, depending on what’s the secret:
just the attack technique, or some secret value like
in the malicious SHA-1.

The latest version of the PoC is copied below.
You may even use it to generate non-malicious con-
stants.

#! / usr / bin /env python
2 #https : // g i t hub . com/veorq /numsgen

"""
4 Generator o f "nothing−up−my−s l e e v e " (NUMS) cons tant s .

6 This aims to demonstrate that NUMS−l ook ing cons tant s shouldn ' t be
b l i nd l y t ru s t ed .

8
This program may be used to b ru t e f o r c e the des ign o f a ma l i c i ou s c ipher ,

10 to c r e a t e somewhat r i g i d curves , e t c . I t g ene ra t e s c l o s e to 2 m i l l i o n
constants , and i s e a s i l y tweaked to generate many more .

12
The code below i s pre t ty much s e l f −explanatory . P lease r epor t bugs .

14
See a l s o <http :// s a f e cu rv e s . c r . yp . to /bada55 . html>

16
Copyright ( c ) 2015 Jean−Phi l ippe Aumasson <j e anph i l i pp e . aumasson@gmail . com>

18 Under CC0 l i c e n s e <http :// creativecommons . org /publicdomain / zero /1.0/>
"""

20
from base64 import b64encode

22 from b i n a s c i i import unhex l i f y
from i t e r t o o l s import product

24 from struct import unpack
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from Crypto . Hash import HMAC, MD5, SHA, SHA224 , SHA256 , SHA384 , SHA512
26 from Crypto . Protoco l .KDF import PBKDF2

import mpmath as mp
28 import sys

30
# add your own s p e c i a l primes

32 PRIMES = (2 , 3 , 5 , 7 , 11 , 13)

34 PRECISIONS = (
42 , 50 , 100 , 200 , 500 , 1000 ,

36 32 , 64 , 128 , 256 , 512 , 1024 ,
)

38
# s e t mpmath p r e c i s i o n

40 mp.mp. dps = max(PRECISIONS)+2

42 # some popular to− i r r a t i o n a l t rans forms ( beware except i on s )
TRANSFORMS = (

44 mp. ln , mp. log10 ,
mp. sqrt , mp. cbrt ,

46 mp. cos , mp. s in , mp. tan ,
)

48

50 IRRATIONALS = [
mp. phi ,

52 mp. pi ,
mp. e ,

54 mp. eu l e r ,
mp. apery ,

56 mp. l og (mp. p i ) ,
] +\

58 [ abs ( trans form ( prime ) ) \
for ( prime , trans form ) in product (PRIMES, TRANSFORMS) ]

60
SEEDS = [ ]

62 for num in IRRATIONALS:
inv = 1/num

64 seed1 = mp. ns t r (num, mp.mp. dps ) . r ep l a c e ( ' . ' , ' ' )
seed2 = mp. ns t r ( inv , mp.mp. dps ) . r ep l a c e ( ' . ' , ' ' )

66 for p r e c i s i o n in PRECISIONS :
SEEDS. append ( seed1 [ : p r e c i s i o n ] )

68 SEEDS. append ( seed2 [ : p r e c i s i o n ] )
i f num >= 1 :

70 seed3 = mp. ns t r (num, mp.mp. dps ) . s p l i t ( ' . ' ) [ 1 ]
for p r e c i s i o n in PRECISIONS :

72 SEEDS. append ( seed3 [ : p r e c i s i o n ] )
continue

74 i f inv >= 1 :
seed4 = mp. ns t r ( inv , mp.mp. dps ) . s p l i t ( ' . ' ) [ 1 ]

76 for p r e c i s i o n in PRECISIONS :
SEEDS. append ( seed4 [ : p r e c i s i o n ] )

78

80 # some common encodings
de f in t10 (x ) :

82 return x

84 de f i n t2 (x ) :
return bin ( int ( x ) )

86
de f int2_nopre f ix ( x ) :

88 return bin ( int ( x ) ) [ 2 : ]
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90 de f hex_lo (x ) :
xhex = '%x ' % int ( x )

92 i f l en ( xhex ) % 2 :
xhex = ' 0 ' + xhex

94 return xhex

96 de f hex_hi ( x ) :
xhex = '%X ' % int ( x )

98 i f l en ( xhex ) % 2 :
xhex = ' 0 ' + xhex

100 return xhex

102 de f raw (x ) :
return hex_lo (x ) . decode ( ' hex ' )

104
de f base64_from_int (x ) :

106 return b64encode (x )

108 de f base64_from_raw (x ) :
return b64encode ( raw (x ) )

110
ENCODINGS = (

112 int10 ,
int2 ,

114 int2_nopre f ix ,
hex_lo ,

116 hex_hi ,
raw ,

118 base64_from_int ,
base64_from_raw ,

120 )

122
de f do_hash (x , ahash ) :

124 h = ahash . new ( )
h . update (x )

126 return h . d i g e s t ( )

128 de f do_hmac(x , key , ahash ) :
h = HMAC. new( key , digestmod=ahash )

130 h . update (x )
return h . d i g e s t ( )

132
HASHINGS = [

134 lambda x : do_hash (x , MD5) ,
lambda x : do_hash (x , SHA) ,

136 lambda x : do_hash (x , SHA224) ,
lambda x : do_hash (x , SHA256) ,

138 lambda x : do_hash (x , SHA384) ,
lambda x : do_hash (x , SHA512) ,

140 ]

142 # HMACs
for hf in (MD5, SHA) :

144 for keybyte in ( ' \x55 ' , ' \xaa ' , ' \ x f f ' ) :
for keylen in (16 , 32 , 64) :

146 HASHINGS. append ( lambda x , \
hf=hf , keybyte=keybyte , key len=keylen : \

148 do_hmac(x , keybyte∗keylen , hf ) )

150 # PBKDF2s
for n in (32 , 64 , 128 , 512 , 1024 , 10 , 100 , 1000) :

152 for s a l t by t e in ( ' \x00 ' , ' \ x f f ' ) :
for s a l t l e n in (8 , 16 , 32) :

154 HASHINGS. append ( lambda x , \
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n=n , s a l t by t e=sa l tbyte , s a l t l e n=s a l t l e n : \
156 PBKDF2(x , s a l t by t e ∗ s a l t l e n , count=n) )

158
DECODINGS = (

160 lambda h : (
unpack ( '>L ' , h [ : 4 ] ) [ 0 ] ,

162 unpack ( '>L ' , h [ 4 : 8 ] ) [ 0 ] ,
unpack ( '>L ' , h [ 8 : 1 2 ] ) [ 0 ] ,

164 unpack ( '>L ' , h [ 1 2 : 1 6 ] ) [ 0 ] , ) ,
lambda h : (

166 unpack ( '<L ' , h [ : 4 ] ) [ 0 ] ,
unpack ( '<L ' , h [ 4 : 8 ] ) [ 0 ] ,

168 unpack ( '<L ' , h [ 8 : 1 2 ] ) [ 0 ] ,
unpack ( '<L ' , h [ 1 2 : 1 6 ] ) [ 0 ] , ) ,

170 )

172
MAXNUMS =\

174 l en (SEEDS) ∗\
l en (ENCODINGS) ∗\

176 l en (HASHINGS) ∗\
l en (DECODINGS)

178

180 de f main ( ) :
t ry :

182 nbnums = int ( sys . argv [ 1 ] )
i f nbnums > MAXNUMS:

184 r a i s e ValueError
except :

186 p r i n t ' expected argument < %d (~2^%.2 f ) ' \
% (MAXNUMS, mp. l og (MAXNUMS, 2) )

188 return −1
count = 0

190
for seed , encoding , hashing , decoding in \

192 product (SEEDS, ENCODINGS, HASHINGS, DECODINGS) :

194 cons tant s = decoding ( hashing ( encoding ( seed ) ) )

196 for constant in cons tant s :
sys . s tdout . wr i t e ( '%08x ' % constant )

198 p r i n t
count += 1

200 i f count == nbnums :
return count

202

204 i f __name__ == '__main__ ' :
sys . e x i t (main ( ) )
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