
7 Extending crypto-related backdoors to other scenarios
by BSDaemon and Pirata

This article expands on the ideas introduced by Taylor Hornby’s “Prototyping an RDRAND Backdoor
in Bochs” in PoC‖GTFO 3:6. That article demonstrated the dangers of using instructions that generate a
#VMEXIT event while in a guest virtual machine. Because a malicious VMM could compromise the randomness
returned to a guest VM, it can affect the security of cryptographic operations.

In this article, we demonstrate that the newly available AES-NI instruction extensions in Intel platforms
are vulnerable to a similar attack, with some additional badness. Not only guest VMs are vulnerable, but
normal user-level/kernel-level applications that leverage the new instruction set are vulnerable as well, unless
proper measures are in place. The reason for that is due to a mostly unknown feature of the platform, the
ability to disable this instruction set.

7.1 Introduction
From Intel’s website,32:

Intel AES-NI is a new encryption instruction set that improves on the Advanced Encryption
Standard (AES) algorithm and accelerates the encryption of data in the Intel Xeon processor
family and the Intel Core processor family.

The instruction has been available since 2010.33

Starting in 2010 with the Intel Core processor family based on the 32nm Intel micro-architecture,
Intel introduced a set of new AES (Advanced Encryption Standard) instructions. This processor
launch brought seven new instructions. As security is a crucial part of our computing lives,
Intel has continued this trend and in 2012 and [sic] has launched the 3rd Generation Intel Core
Processors, codenamed Ivy Bridge. Moving forward, 2014 Intel micro-architecture code name
Broadwell will support the RDSEED instruction.

On a Linux box, a simple grep would tell if the instruction is supported in your machine.
1 bsdaemon@bsdaemon . org :~# grep aes /proc/cpuinfo

f l a g s : fpu vme de pse t s c msr pae mce cx8 ap ic sep mtrr pge mca cmov
3 pat pse36 c l f l u s h dts acp i mmx f x s r s s e s s e2 s s ht tm pbe s y s c a l l nx rdtscp lm

constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
5 aper fmper f eager fpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx e s t tm2 s s s e 3

cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadl ine_timer aes xsave avx
7 f16c rdrand lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi

f l e x p r i o r i t y ept vpid f s g sba s e smep erms

A little-known fact, though, is that the instruction set can be disabled using an internal MSR on the
processor. It came to our attention while we were looking at BIOS update issues and saw a post about a
machine with AES-NI showing as disabled even though it was in, fact, supported.34

Researching the topic, we came across the MSR for a Broadwell Platform: 0x13C. It will vary for each
processor generation, but it is the same in Haswell and SandyBridge, according to our tests. Our machine
had it locked.
MSR 0x13C

2 Bit Desc r ip t i on
0 Lock b i t (always unlocked on boot time , BIOS s e t s i t)

4 1 Not de f ined by de fau l t , 1 w i l l d i s ab l e AES−NI
2−32 Not sure what i t does , not touched by our BIOS (probably r e s e rved)

Discussing attack possibilities with a friend in another scenario—related to breaking a sandbox-like feature
in the processor—we came to the idea of using it for a rootkit.

32http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard–aes-/data-
protection-aes-general-technology.html

33https://software.intel.com/en-us/node/256280.
34“AES-NI shows Disabled”, http://en.community.dell.com/support-forums/servers/f/956/t/19509653

42

7.2 The Idea

All the code that we saw that supports AES-NI is basically about checking if it is supported by the processor,
via CPUID, including the reference implementations on Intel’s website. That’s why we considered the
possibility of manipulating encryption in applications by disabling the extension and emulating its expected
results. Not long after we had that thought, we read in the PoC‖GTFO 3:6 about RDRAND.

If the disable bit is set, the AES-NI instructions will return #UD (Invalid Opcode Exception) when issued.
Since the code checks for the AES-NI support during initialization instead of before each call, winning the
race is easy—it’s a classic TOCTOU.

Some BIOSes will set the lock bit, thus hard-enabling the set. A write to the locked MSR then causes a
general protection fault, so there are two possible approaches to dealing with this case.

First, we can set both the disable bit and the lock bit. The BIOS tries to enable the instruction, but that
write is ignored. The BIOS tries to lock it, but it is ignored. That works unless the BIOS checks if the write
to the MSR worked or not, which is usually not the case—in the BIOS we tested, the general protection
fault handler for the BIOS just resumed execution. For beating the BIOS to this punch, one could explore
the BIOS update feature, setting the TOP_SWAP bit, which let code execute before BIOS.35 Chipsec toolkit36
TOP_SWAP mechanism is locked.

For a Vulnerable Machine,

1 ### BIOS VERSION 65CN90WW
OS : u e f i

3 Chipset :
VID : 8086

5 DID : 0154
Name : Ivy Bridge (IVB)

7 Long Name : Ivy Bridge CPU / Panther Point PCH
[−] FAILED: BIOS I n t e r f a c e i n c l ud ing Top Swap Mode i s not locked

For a Protected Machine,

OS : Linux 3.2.0−4−686−pae #1 SMP Debian 3.2.65−1+deb7u2 i686
2 Platform : 4 th Generation Core Proces sor (Haswel l U/Y)

VID : 8086
4 DID : 0A04

CHIPSEC : 1 . 1 . 7
6 [∗] BIOS Top Swap mode i s d i s ab l ed

[∗] BUC = 0x00000000 << Backed Up Control (RCBA + 0x3414)
8 [0 0] TS = 0 << Top Swap

[∗] RTC ve r s i on o f TS = 0
10 [∗] GCS = 0x00000021 << General Control and Status (RCBA + 0x3410)

[0 0] BILD = 1 << BIOS In t e r f a c e Lock Down
12 [1 0] BBS = 0

14 [+] PASSED: BIOS I n t e r f a c e i s locked (i n c l ud ing Top Swap Mode)

The problem with this approach is that software has to check if the AES-NI is enabled or not, instead of
just assuming the platform supports it.

Second, we can NOP-out the BIOS code that locks the MSR. That works if BIOS modification is possible
on the platform, which is often the case. There are many options to reverse and patch your BIOS, but most
involve either modifying the contents of the SPI Flash chip or single-stepping with a JTAG debugger.

Because the CoreBoot folks have had all the fun there is with SPI Flash, and because folk wisdom says
that JTAG isn’t feasible on Intel, we decided to throw folk wisdom out the window and go the JTAG route.
We used the Intel JTAG debugger and an XDP 3 device. The algorithm used is provided in the attachment 3.

To be able to set this MSR, one needs Ring0 access, so this attack can be leveraged by a hypervisor
against a guest virtual machine, similar to the RDRAND attack. But what’s interesting in this case is that it
can also be leveraged by a Ring0 application against a hypervisor, guest, or any host application! We used
a Linux Kernel Module to intercept the #UD; a sample prototype of that module is in attachment 6.

35“Using SMM for other purposes”, Phrack 65:7
36https://github.com/chipsec/chipsec

43

7.3 Checking your system

You can use the Chipsec module that comes with this article to check if your system has the MSR locked.
Chipsec uses a kernel module that opens an interface (a device on Linux) for its user-mode component
(Python code) to request info on different elements of the platform, such as MSRs. Obviously, a kernel
module could do that directly. An example of such a module is provided with this article.

Since the MSR seems to change from system to system (and is not deeply documented by Intel itself),
we recommend searching your OEM BIOS vendor forums to try and guess what is that MSR’s number for
your platform if the value mentioned here doesn’t work. Disassembling your BIOS calls for the wrmsr might
also help. Some BIOSes offer the possibility of disabling the AES-NI set in the BIOS menu, thus making it
easier to identify the code (so dump the BIOS and diff). By default, the platform initializes with the disable
bit unset, i.e., with AES-NI enabled. In our case, the BIOS vendor only set the lock bit.

7.4 Conclusion

This article demonstrates the need for checking the platform as whole for security issues. We showed that
even “safe” software can be compromised, if the configuration of the platform’s elements is wrong (or not
ideal). Also note that forensics tools would likely fail to detect these kinds of attacks, since they typically
depend on the platform’s help to dissect software.

Acknowledgements

Neer Roggel for many excellent discussions on processor security and modern features, as well for the en-
lightening conversation about another attack based on disabling the AES-NI in the processor.

Attachment 1: Patch for Chipsec

This patch is for Chipsec (https://github.com/chipsec/chipsec) public repository version from March
9, 2015. A better (more complete) version of this patch will be incorporated into the public repository soon.

d i f f −rNup chipsec−master / source / t oo l / ch ip s e c / c f g /hsw . xml ch ipsec−master . new/ source / t oo l / ch ip s e c /
c f g /hsw . xml

2 −−− ch ipsec−master / source / t oo l / ch ip s e c / c f g /hsw . xml 2015−01−23 16 :07 :19 .000000000 −0800
+++ chipsec−master . new/ source / t oo l / ch ip s e c / c f g /hsw . xml 2015−03−09 19 :13 :55 .949498250 −0700

4 @@ −39,6 +39 ,10 @@
<!−− −−>

6 <!−− #################################### −−>
<r e g i s t e r s >

8 + <r e g i s t e r name="IA32_AES_NI" type="msr" msr="0x13c" desc="AES−NI Lock">
+ <f i e l d name="Lock" b i t="0" s i z e ="1" desc="AES−NI Lock Bit " />

10 + <f i e l d name="AESDisable" b i t="1" s i z e ="1" desc="AES−NI Disab le Bit (s e t to d i s ab l e) " />
+ </r e g i s t e r >

12 </r e g i s t e r s >

14 −</con f i gu ra t i on >
\ No newl ine at end o f f i l e

16 +</con f i gu ra t i on >
d i f f −rNup chipsec−master / source / t oo l / ch ip s e c /modules/hsw/aes_ni . py chipsec−master . new/ source / t oo l

/ ch ip s e c /modules/hsw/aes_ni . py
18 −−− ch ipsec−master / source / t oo l / ch ip s e c /modules/hsw/aes_ni . py 1969−12−31 16 :00 :00 .000000000 −0800

+++ chipsec−master . new/ source / t oo l / ch ip s e c /modules/hsw/aes_ni . py 2015−03−09 19 :22 :12 .693518998
−0700

20 @@ −0,0 +1 ,68 @@
+#CHIPSEC: Platform Secur i ty Assessment Framework

22 +#Copyright (c) 2010−2015 , I n t e l Corporat ion
+#

24 +#This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
+#modify i t under the terms o f the GNU General Publ ic L icense

26 +#as publ i shed by the Free Software Foundation ; Vers ion 2 .
+#

28 +#This program i s d i s t r i bu t e d in the hope that i t w i l l be use fu l ,
+#but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

30 +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Publ ic L icense f o r more d e t a i l s .

44

32 +#
+#You should have r e c e i v ed a copy o f the GNU General Publ ic L icense

34 +#along with t h i s program ; i f not , wr i t e to the Free Software
+#Foundation , Inc . , 51 Frankl in Street , F i f th Floor , Boston , MA 02110−1301 , USA.

36 +#
+#Contact in fo rmat ion :

38 +#ch ip s e c@ in t e l . com
+#

40 +
+

42 +
+

44 +## \addtogroup modules
+# __chipsec/modules/hsw/aes_ni .py__ − checks f o r AES−NI lock

46 +#
+

48 +
+from ch ip s e c . module_common import ∗

50 +from ch ip s e c . ha l . msr import ∗
+

52 +TAGS = [MTAG_BIOS,MTAG_HWCONFIG]
+

54 +c l a s s aes_ni (BaseModule) :
+

56 + def __init__(s e l f) :
+ BaseModule . __init__(s e l f)

58 +
+ def is_supported (s e l f) :

60 + return True
+

62 + def check_aes_ni_supported (s e l f) :
+ return True

64 +
+ def check_aes_ni (s e l f) :

66 + s e l f . l o gg e r . s t a r t_te s t ("Checking i f AES−NI lock b i t i s s e t ")
+

68 + aes_msr = ch ip s e c . ch i p s e t . r ead_reg i s t e r (s e l f . cs , ’IA32_AES_NI ’)
+ ch ip s e c . ch i p s e t . p r i n t_r e g i s t e r (s e l f . cs , ’IA32_AES_NI ’ , aes_msr)

70 +
+ aes_msr_lock = aes_msr & 0x1

72 +
+ # We don ’ t r e a l l y care i f i t i s enabled or not s i n c e the so f tware needs to

74 + # t e s t − the only s e c u r i t y i s s u e i s i f i t i s not locked
+ aes_msr_disable = aes_msr & 0x2

76 +
+ # Check i f the lock i s not set , then ERROR

78 + i f (not aes_msr_lock) :
+ return False

80 +
+ return True

82 +
+ # −−

84 + # run (module_argv)
+ # Required func t i on : run here a l l t e s t s from th i s module

86 + # −−
+ def run (s e l f , module_argv) :

88 + return s e l f . check_aes_ni ()

Attachment 2: Kernel Module to check and set the AES-NI related MSRs

If for some reason you can’t use Chipsec, this Linux kernel module reads the MSR and checks if the AES-NI
lock bit is set.

#include <l inux /module . h>
2 #include <l inux / dev i ce . h>

#include <l inux /highmem . h>
4 #include <l inux / kal l syms . h>

#include <l inux / tty . h>
6 #include <l inux / ptrace . h>

#include <l inux / ve r s i on . h>
8 #include <l inux / s l ab . h>

#include <asm/ io . h>
10 #include "include/rop .h"

#include <l inux /smp . h>

45

12
#define _GNU_SOURCE

14
#define FEATURE_CONFIG_MSR 0x13c

16
MODULE_LICENSE("GPL") ;

18
#define MASK_LOCK_SET 0x00000001

20 #define MASK_AES_ENABLED 0x00000002
#define MASK_SET_LOCK 0x00000000

22
void ∗ read_msr_in_c (void ∗ CPUInfo)

24 {
int ∗ po in t e r ;

26 po in t e r=(int ∗) CPUInfo ;
asm volat i le ("rdmsr" : "=a" (po in t e r [0]) , "=d" (po in t e r [3]) : "c" (FEATURE_CONFIG_MSR)) ;

28 return NULL;
}

30
int __init

32 init_module (void)
{

34 int CPUInfo [4]={−1};

36 pr in tk (KERN_ALERT "AES−NI testing module\n") ;

38 read_msr_in_c (CPUInfo) ;

40 pr in tk (KERN_ALERT "read : %d %d from MSR: 0x%x \n" , CPUInfo [0] , CPUInfo [3] ,
FEATURE_CONFIG_MSR) ;

42 i f (CPUInfo [0] & MASK_LOCK_SET)
pr intk (KERN_ALERT "MSR: lock bit i s set\n") ;

44
i f (! (CPUInfo [0] & MASK_AES_ENABLED))

46 pr in tk (KERN_ALERT "MSR: AES_DISABLED bit i s NOT set − AES−NI i s ENABLED\n") ;

48 return 0 ;
}

50
void __exit

52 cleanup_module (void)
{

54 pr in tk (KERN_ALERT "AES−NI MSR unloading \n") ;
}

Attachment 3: In-target-probe (ITP) algorithm
Since we used an interface available only to Intel employees and OEM partners, we decided to at least provide
the algorithm behind what we did. We started with stopping the machine execution at the BIOS entrypoint.
We then defined some functions to be used through our code.

1 get_eip () : Get the cur rent RIP
get_cs () : Get the cur rent CS

3 get_ecx () : Get the cur rent value o f RCX
get_opcode () : Get the cur rent opcode (d i sassembly the cur rent i n s t r u c t i o n)

5 find_wrmsr () : Uses the get_opcode () to compare with the ’300 f ’ (wrmsr opcode) and
return True i f found (Fal se i f not)

7 search_wrmsr () :
whi l e find_wrmsr () == False : s tep () −> go to the next i n s t r u c t i o n (s i ng l e−s tep)

9 f ind_aes () :
whi l e True :

11 step ()
search_wrmsr ()

13 i f get_ecx () == ’0000013 c ’ :
p r i n t "Found AES MSR"

15 break

Attachment 4: AES-NI Availability Test Code
This code uses the CPUID feature to see if AES-NI is available. If disabled, it will return “AES-NI Disabled”.
This is the reference code to be used by software during initialization to probe for the feature.

46

1 #include <std i o . h>

3 #define cpuid (l e v e l , a , b , c , d) \
asm("xchg{ l }\t{%%}ebx , %1\n\t" \

5 "cpuid\n\t" \
"xchg{ l }\t{%%}ebx , %1\n\t" \

7 : "=a" (a) , "=r" (b) , "=c" (c) , "=d" (d) \
: "0" (l e v e l))

9
int main (int argc , char ∗∗ argv) {

11 unsigned int eax , ebx , ecx , edx ;
cpuid (1 , eax , ebx , ecx , edx) ;

13 i f (ecx & (1<<25))
p r i n t f ("AES−NI Enabled\n") ;

15 else
p r i n t f ("AES−NI Disabled\n") ;

17 return 0 ;
}

Attachment 5: AES-NI Simple Assembly Code (to trigger the #UD)
This code will run normally (exit(0) call) if AES-NI is available and will cause a #UD if not.

Sect ion . t ext
2 g l oba l _start

4 _start :
mov ebx , 0

6 mov eax , 1
aesenc xmm7, xmm1

8 in t 0x80

Attachment 6: #UD hooking
There are many ways to implement this, as ‘Handling Interrupt Descriptor Table for fun and profit” in
Phrack 59:4 shows. Another option, however, is to use Kprobes and hook the function invalid_op().

#include <l inux /module . h>
2 #include <l inux / ke rne l . h>

4 int index = 0 ;
module_param(index , int , 0) ;

6
#define GET_FULL_ISR(low , high) (((uint32_t) (low)) | (((uint32_t) (high)) << 16))

8 #define GET_LOW_ISR(addr) ((uint16_t) (((uint32_t) (addr)) & 0x0000FFFF))
#define GET_HIGH_ISR(addr) ((uint16_t) (((uint32_t) (addr)) >> 16))

10
uint32_t o r i g ina l_hand l e r s [2 5 6] ;

12 uint16_t old_gs , old_fs , old_es , old_ds ;

14 typedef struct _idt_gate_desc {
uint16_t o f f s e t_low ;

16 uint16_t segment_se lector ;
uint8_t zero ; // zero + reserved

18 uint8_t f l a g s ;
uint16_t o f f s e t_h igh ;

20 } idt_gate_desc_t ;
idt_gate_desc_t ∗ gate s [2 5 6] ;

22
void handler_implemented (void) {

24 pr in tk (KERN_EMERG "IDT Hooked Handler\n") ;
}

26
void f oo (void) {

28 __asm__("push %eax") ; // p laceho lder for o r i g i na l handler

30 __asm__("pushw %gs") ;
__asm__("pushw %fs") ;

32 __asm__("pushw %es") ;
__asm__("pushw %ds") ;

34 __asm__("push %eax") ;

47

__asm__("push %ebp") ;
36 __asm__("push %edi") ;

__asm__("push %esi") ;
38 __asm__("push %edx") ;

__asm__("push %ecx") ;
40 __asm__("push %ebx") ;

42 __asm__("movw %0, %%ds" : : "m" (old_ds)) ;
__asm__("movw %0, %%es" : : "m" (old_es)) ;

44 __asm__("movw %0, %%fs" : : "m" (o ld_fs)) ;
__asm__("movw %0, %%gs" : : "m" (old_gs)) ;

46
handler_implemented () ;

48
// place o r i g i na l handler in i t s p laceho lder

50 __asm__("mov %0, %%eax" : : "m" (o r i g ina l_hand l e r s [index])) ;
__asm__("mov %eax , 0x24(%esp)") ;

52
__asm__("pop %ebx") ;

54 __asm__("pop %ecx") ;
__asm__("pop %edx") ;

56 __asm__("pop %esi") ;
__asm__("pop %edi") ;

58 __asm__("pop %ebp") ;
__asm__("pop %eax") ;

60 __asm__("popw %ds") ;
__asm__("popw %es") ;

62 __asm__("popw %fs") ;
__asm__("popw %gs") ;

64
// ensures tha t " re t " w i l l be the next in s t ruc t i on for the case

66 // compiler adds more in s t ruc t i on s in the ep i logue
__asm__("ret") ;

68 }

70 int init_module (void) {
// IDTR

72 unsigned char i d t r [6] ;
uint16_t id t_ l im i t ;

74 uint32_t idt_base_addr ;
int i ;

76
__asm__("mov %%gs , %0" : "=m" (old_gs)) ;

78 __asm__("mov %%fs , %0" : "=m" (o ld_fs)) ;
__asm__("mov %%es , %0" : "=m" (old_es)) ;

80 __asm__("mov %%ds , %0" : "=m" (old_ds)) ;

82 __asm__("sidt %0" : "=m" (i d t r)) ;
i d t_ l im i t = ∗ ((uint16_t ∗) i d t r) ;

84 idt_base_addr = ∗ ((uint32_t ∗)&i d t r [2]) ;
p r in tk ("IDT Base Address : 0x%x, IDT Limit : 0x%x\n" , idt_base_addr , id t_ l im i t) ;

86
gate s [0] = (idt_gate_desc_t ∗) (idt_base_addr) ;

88 for (i = 1 ; i < 256 ; i++)
gate s [i] = gate s [i − 1] + 1 ;

90
pr in tk ("int %d entry addr %x, seg se l %x, f lags %x, of f set %x\n" , index , gate s [index] , (

uint32_t) gate s [index]−>segment_selector , (uint32_t) gate s [index]−>f l a g s , GET_FULL_ISR(gate s [
index]−>offset_low , gate s [index]−>of f s e t_h igh)) ;

92
for (i = 0 ; i < 256 ; i++)

94 o r i g ina l_hand l e r s [i] = GET_FULL_ISR(gate s [i]−>offset_low , gate s [i]−>of f s e t_h igh) ;

96 gate s [index]−>of f se t_low = GET_LOW_ISR(&foo) ;
gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(&foo) ;

98
return 0 ;

100 }

102 void cleanup_module (void) {
pr in tk ("cleanup entry %d\n" , index) ;

104
gate s [index]−>of f se t_low = GET_LOW_ISR(o r i g ina l_hand l e r s [index]) ;

106 gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(o r i g ina l_hand l e r s [index]) ;
}

48

