
Ange Albertini’s extensions to the ECB Penguin.

6



3 ECB as an Electronic Coloring Book
by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in PoC‖GTFO 4:13 about ECB? Forbidden
things are attractive, I know, I was young too. Let’s explore that area together so that you’ll have fun and
you’ll always remember not to use ECB later in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB penguin is a kind of a fraud, brandished
like a scarecrow! The reality when you get an encrypted image in ECB mode is that you’ve no clue of its
characteristics, its size, its pixel representation. Let’s take another example than the penguin (as the source
image of this fraud seems to be lost forever). A wrong guess, such as assuming a square format, will render
just a meaningless bunch of static.

So to get the penguin back, the penguin’s author cheated and encrypted only the pixel values, but not
the description of the image, such as its size. Moreover he probably tried different keys until he got the
tuxedo as black as possible as he has no control on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB is a very bad way to encrypt and we’ll
blow it apart. But what’s ECB? No need to understand the underlying crypto, just that the image is
being sliced in small pieces—sixteen bytes wide in case of AES-ECB—and each piece is replaced by random
garbage. Identical pieces are replaced by the same random data and if two pieces are different their respective
encrypted versions are too. That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly the mangled pixels we can paint them! We
know that identical blocks of random data represent the encrypted version of the same initial block of color,
so let’s pick a color ourselves and paint over those similar pieces. That’s what this little program does.
You’ll find it as ElectronicColoringBook.py by unzipping this PDF.3 It also tries to guess the right ratio by
checking which one will give columns of pixels as coherent as possible.

$ ElectronicColoringBook.py test.bin

Already better! The lines are properly aligned but the image is too flat. That’s because we painted each
byte as one pixel but the original image was probably created with three bytes per pixel, so let’s fix that.

3https://github.com/doegox/ElectronicColoringBook

7



$ ElectronicColoringBook.py test.bin –pixelwidth=3

As we don’t know the original colors, the tool is choosing some randomly at each execution. Now that the
ratio and pixel width are correct we can observe vertical stripes. That’s what happens when you can’t have
an exact number of pixels in each block and that’s exactly the case here. We guessed that each pixel requires
three bytes and the blocks are 16-byte wide so if some pixels of the same color—let’s say #AABBCC—are
side by side we get three types of encrypted blocks.

1 AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4
BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF

3 CCAABBCCAABBCCAABBCCAABBCCAABBCC −> 12B4502017A19C0EB313EADF47638FB2
AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4

5 BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF
etc

So we’ve got three types of encrypted data for the same color, repeating over and over. Still one last
complication: Pluto’s tail is visible on the left of the image, because before the encrypted pixels there is the
encrypted file header. So we’ll apply a small offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 –groups=3 –offset=1

And now let’s make it a real coloring book by choosing those colors ourselves! We’ll draw the ten most
frequent colors in white (#ffffff) and the remaining blocks, which typically contain all kinds of transitions
from one color area to another one, in black (#000000).

8



$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 –palette=\
’#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

Kids, those colors are encoded with their RGB values. If this is confusing, ask the geekiest of your parents;
she can help you. Colors are sorted by largest areas, so let’s keep the white color for the background. Let’s
paint Pluto in orange (#fcb604) and Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \
’#ffffff#fcb604#000000#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

If you don’t know which area corresponds to which color in the palette, just try it out with a flashy color.
Eventually, we wind up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \
’#ffffff#fcb604#000000#f9fa00#fccdcc#fc1b23#a61604#a61604#fc8591#97fe37#000000’

9



Note to copyright owners:
We were careful to disclose only images encrypted with AES-256 and a random key that was
immediately destroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So remember that ECB should really stand
for “Electronic Coloring Book.” They should therefore should be only used by kids to have fun, never by
grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna as in any decent scientific paper about
image processing? Tell him simply that it’s for a coloring book, not Playboy! There are more complex
examples and explanations in the project directory. It’s even possible to colorize other things, such as
binaries or XORed images!

10


