
11 A Binary Magic Trick, Angecryption
by Ange Albertini and Jean-Philippe Aumasson

This PDF file, the one that you are reading right now, contains a magic trick. If you encrypt it with AES
in CBC mode, it becomes a PNG image! This brief article will teach you how to perform this trick on your
own files, combining PDF, JPEG, and PNG files that gracefully saunter across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we will create a first file F1 that gets rendered
the same as S and a second file F2 = AESK,IV (F1) that gets rendered the same as T by respective format
viewers. We’ll use the standard AES-128 algorithm in CBC mode, which is proven to be semantically secure13
when used with a random IV .

In other words, any file encrypted with AES-CBC should look like random garbage, that is, the encryption
process should destroy all structure of the original file. Like all good magicians, we will cheat a bit, but I
tell you three times that if you encrypt this PDF with an IV of 5B F0 15 E2 04 8C E3 D3 8C 3A 97 E7
8B 79 5B C1 and a key of “Manul Laphroaig!”, you will get a valid PNG file.

11.1 When the Format Payload can Start at Any Offset
First let’s pick a format for the file F2 that doesn’t require its payload to start right at offset 0. Such formats
include ZIP, Rar, 7z, etc. The principle is simple:

First we encrypt S, and get apparent garbage Enc(S). Then we create F2 by appending T to Enc(S), which
will be padded, and we decrypt the whole file to get F1. Thus F1 is S with apparent garbage appended, and
F2 is T with apparent garbage prepended.

This method will also work for short enough S and formats such as PDF that may begin within a certain
limited distance of offset 0, but not at arbitrary distance.

11.2 Formats Starting at Offset 0
We had it easy with formats that allowed some or any amount of garbage at the start of a file. However,
most formats mandate that their files being with a magic signature at offset 0. Therefore, to make the first
blocks of F1 and F2 meaningful both before and after encryption, we need some way to control AES output.
Specifically, we will abuse our ability to pick the Initialization Vector (IV) to control exactly what the first
block of F1 encrypts to.

In CBC mode, the first 16-byte ciphertext block C0 is computed from the first plaintext block P0 and
the 16-byte IV as

C0 = EncK(P0 ⊕ IV )

where K is the key and Enc is AES. Thus we have DecK(C0) = P0 ⊕ IV and we can solve for

IV = DecK(C0)⊕ P0

As a consequence, regardless of the actual key, we can easily choose an IV such that the first 16 bytes of
F1 encrypt to the first 16 bytes of F2, for any fixed values of those 2×16 bytes. The property is obviously
preserved when CBC chaining is used for the subsequent blocks, as the first block remains unchanged.

So now we have a direct AES encryption that will let us control the first 16 bytes of F2.
Now that we control the first block, we’re left with a new problem. This trick of choosing the IV to force

the encrypted contents of the first block won’t work for latter blocks, and they will be garbage beyond our
control.

13“IND-CPA” in cryptographers’ jargon.

37



So how do we turn this garbage into valid content (that renders as T )? We don’t. Instead, we use the
contents of the first block to cause the parser to skip over the garbage blocks, until it lands at the ending
region which we control. This trick is similar to the one I used to combine a PDF and JPEG in Section 3,
and it’s a damned important trick to keep handy for other purposes.

Let’s take a look at some specific file formats and how to implement them with Angecryption.

11.2.1 Joint Photographic Experts Group

According to specification,14 JPEG files start with a signature FF D8 called “Start Of Image” (SOI) and
consist of chunks called segments. Segments are stored as

〈marker : 2〉〈variablesize(data+ 2) : 2〉〈data :?〉

In a typical JPEG file the SOI is followed by the APP0 segment that contains the JFIF signature, with
marker FF E0. The APP0 segment is usually 16 bytes.

So we need to insert a COMment segment (marker FF FE) right after the SOI. As we know the size of S
in advance, we can already determine the start of F2, and then the AES-CBC IV. T will then contain the
APP0 segment, and its usual JPEG content.

11.2.2 Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain a checksum, and their size structure is four
bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A” and is then structured in TLV chunks.

〈length(data) : 4〉〈chunktype : 4〉〈chunkdata :?〉〈crc(chunktype+ chunkdata) : 4〉

These are typically located right after the signature, where an IHDR (ImageHeaDeR) chunk usually starts.
For F2 to be valid, we need to start with a chunk that will cover the len(S)−16 garbage bytes of Enc(S).

We can give it any lowercase chunk type,15 and luckily, at the end of the chunk type, we’re right at the limit
of 16 bytes, so no brute forcing of the next encrypted block is required.

At that point of F2 the uncontrolled garbage portion may start. We then calculate its checksum, append
it, then resume with all the chunks coming from T . Our F2 is now composed of (1) a PNG signature, (2) a
single dummy chunk containing Enc(S), and (3) the T chunks that make up the meaningful image. This is
a valid PNG file.

11.2.3 Portable Document Format

PDF may include dummy objects of any length. However, we need a trick to make the signature and the
first object declaration fit in the first 16 bytes.

A PDF starts with “%PDF-1.5” signature. This signature has to be entirely within the first 1024 bytes
of the file, and everything after the signature must be a valid PDF file. Because the uncontrolled portion of
the file appears as a lot of garbage after the first block, it needs to be enclosed in a dummy stream object.

14JPEG File Interchange Format Version 1.02, Sept. 1, 1992
15If the first letter in the type field of a PNG block is lowercase, then that chunk will be ignored by the viewer, which

interprets it as a custom dummy block.

38



1 0 obj
<< >>
stream

Unfortunately, the PDF signature followed by a standard stream object declaration take up 30 bytes.
Choosing the IV only gives us 16 bytes to play with, so we must somehow compress the PDF header and
opening of a stream object into slightly more than half the space it would normally take.

Our trick will be to truncate both the signature and the object declaration by inserting null bytes
“%PDF-\0obj\0stream”. The signature is truncated by a null byte,16 and we also omit the object reference
and generation, and the object dictionary. Luckily, this reduced form takes exactly 16 bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as a valid but unused stream object. We then
only need the start of T to close that object, and then T can be a valid PDF. So F2 is a valid PDF file,
showing T ’s content.

11.3 Conclusion
Provided that the format of our source file tolerates some appended garbage, and that the file itself is not
too big, we can encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file formats. Any block cipher will do, provided that
its standard block size is big enough to fit the target header and a dummy chunk start. This means we need
six bytes for JPEG, sixteen bytes for PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight bytes, can still be used to encrypt to JPEG.
ThreeFish, which can have a block size of 64 bytes, can even be used to encrypt a PE. The first block would
be large enough to fit the entire DOS_HEADER, which allows you to relocate the NT_Headers wherever you
like, up to 0x0FFF_FFFF.

So you could make a valid WAV file that, when encrypted with AES, gives you a valid PDF. That same
file, when encrypted with Triple-DES, gives you a JPEG. Furthermore, when decrypted with ThreeFish,
that file would give you a PE. You can also chain stages of encryption, as long as the size requirements are
taken care of.

16This part of the trick was learned from Tavis Ormandy.

39


