
7 Patching Kosher Firmware for Nokia 2720
by Assaf Nativ

D7 90 D7 A1 D7 A3 D7 A0 D7 AA D7 99 D7 91
in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patching firmware of the Nokia 2720 and related
feature phones. We’ll abuse a handy little bug in a child function called by the verification routine. This
modification to the child function that we can modify allows us to bypass the parent function that we cannot
modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or MMS messages, manage a calendar, listen
to FM radio, and play Snake. Its web browser is dysfunctional, but it can load a few websites over GPRS
or 3G. It supports Bluetooth, those fancy ringtones that no one ever buys, and a calculator. It can also take
ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of modern feature phones such as the Nokia
208.4 support Twitter, WhatsApp, and a limited Facebook client. How are the faithful to study their scripture
with so many distractions?

A Kosher phone would be a feature phone adapted to the unique needs of a particular community of the
Orthodox Jews. The general idea is that they don’t want to be bothered by the outside world in any way,
but they still want a means to communicate between themselves without breaking the strict boundaries they
made. They wanted a phone that could make phone calls or calculate, but that only supported a limited list of
Hasidic ringtones and only used Bluetooth for headphones. They would be extra happy if a few extra features
could be added, such as a Jewish calendar or a prayer time table. While Pastor Laphroaig just wants a phone
that doesn’t ring (except maybe when heralding new PoC), frowns on Facebook, and banishes Tweety-boxes at
the dinner table, this community goes a lot further and wants no Facebook, Twitter, or suchlike altogether.
This strikes the Pastor as a bit extreme, but good fences make good neighbors, and who’s to tell a neighbor
how tall a fence he ought to build? So this is the story of a neigbor who got paid to build such a fence.5

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

I started with a Nokia phone, as they are cost effective for hardware quality and stability. From Nokia I
got no objection to the project, but also no help whatsoever. They said I was welcome to do whatever helps
me sell their phones, but this target group was too small for them to spend any development time on. And
so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five generations of the Kosher phone. These were
built around the Nokia 1208, Nokia 2680, Nokia 2720, Samsung E1195, and the Nokia 208.4. There were a
few models in between that didn’t get to the final stage either because I failed in making a Kosher firmware
for them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I’ve used during the development, because these phones still account for
a fair bit of my income. However, I think the time has come for me to share some of the knowledge I’ve
collected during this project.

It would be too long to cover all of the phones in a single article, so I will start with just one of them,
and just a single part that I find most interesting.

Nokia has quite a few series of phones differ in the firmware structure and firmware protection. SIM-
locking has been prohibited in the Israeli market since 2010, but these protections also exist to keep neighbors
from playing with baseband firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series. The oldest, DCT1, works with the old analog
networks. DCT3, DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G and sometimes 3G, so far
as I know. And anything that comes after, such as Asha S40, is 3G. It is important to understand that there
are different generations of phones because vulnerabilities and firmware seem to work for all devices within
a family. Devices in different families require different firmware.

5Disclaimer: No one forces this phone on them; they choose to have it of their own will. No government or agency is involved
in this, and the only motivation that drives customers to use this kind of phone is the community they live in.

22

I’ll start with a DCT4+ phone, the Nokia 1208. Nowadays there are quite a few people out there who
know how to patch DCT4+ firmware, but the solution is still not out in the open. One would have to collect
lots of small pieces of information from many forum posts in order to get a full solution. Well, not anymore,
because I’m going to present here that solution in all of its glory.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

A DCT4+ phone has two regions of executable code, a flashable part and a non-flashable secured part,
which is most likely mask ROM. The flashable memory contains a number of important regions.

• The Operating System, which Nokia calls the MCUSW. (Read on to learn how they came up with this
name.)

• Strings and localization strings, which Nokia calls the PPM.

• General purpose file system in a FAT16 format. This part contains configuration files, user files,
pictures, ringtones, and more. This is where Nokia puts phone provider customizations, and this part
is a lot less protected. It is usually referred to as the CNT or IMAGE.

0x0084_0000
Secured Rom

0x0090_0000
0x0100_0000

MCUSW
and PPM

0x01CE_0000
0x0218_0000

Image
0x02FC_0000
0x0300_0000

External RAM
0x0400_0000
0x0500_0000

API RAM
0x0510_0000

All of this data is accessible for the software as one flat memory module, meaning
that code that runs on the device can access almost anything that it knows how to
locate.

At this point I focused on the operating system, in my attempt to patch it to
make the phone Kosher. The operating system contains nearly all of the code that
operates the phone, including the user interface, menus, web browser, SMS, and
anything else the phone does. The only things that are not part of the OS are the
code for performing the flashing, the code for protecting the flash, and some of the
baseband code. These are all found in the ROM part. The CNT part contains only
third party apps, such as games.

Obtaining a copy of the firmware is not hard. It’s available for download from
many websites, and also directly from Nokia’s own servers. These firmware images
can be flashed using Nokia’s flashing tool, Phoenix Service Software, or with Navi-
Firm+. The operating system portion comes with a .mcu or .mcusw extension, which
stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of the file. The is a
simple Tag-Length-Value format. From offset 0xE6 everything that follows is encoded
as follows:

• 1 Byte: Type, which is always 0x14.

• 1 Dword: Address

• 3 Bytes: Length

• 1 Byte: Unknown

• 1 Byte: Xor checksum

23

Combining all of the data chunks, starting at the address 0x100_0000 we’ll see something like this:
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0000_0000 AD 7E B6 1A 1B BE 0B E2 7D 58 6B E4 DB EE 65 14
0000_0010 42 30 95 44 99 18 18 38 DB 00 FF FF FF FF FF FF
0000_0020 FF FF FF FF F8 1F 8B 22 50 65 61 4B FF FF FF FF
0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF F8 C4 AA C3
0000_0070 85 CF C6 E7 00 04 8A 5F 01 00 01 00 00 00 00 00
0000_0080 00 00 00 00

Note that some of these 0xFF bytes are just missing data because of the way it is encoded. The first
data chunk belongs to address 0x0100_0000, but it’s just 0x2C bytes long, and the next data chunk starts
at 0x0100_0064. The data that follows byte 0x0100_0084 is encrypted, and is auto decrypted by hardware.

I know that decryption is done at the hardware level, because I can sniff to see what bytes are actually sent
to the phone during flashing. Further, there are a few places in memory, such as the bytes from 0x0100_0000
to 0x0100_0084, that are not encrypted. After I managed to analyze the encryption, I later found that in
some places in the code these bytes are accessed simply by adding 0x0800_0000 to the address, which is a
flag to the CPU that says that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the encryption is, and how I can reverse it to patch
the code. My answer is going to disappoint you, but I found out how the encryption works by gluing together
pieces of information that are published on the Internet.

If you wonder how the fine folks on the Internet found the encryption, I’m wondering the same thing.
Perhaps someone leaked it from Nokia, or perhaps it was reverse engineered from the silicon. It’s possible,
but unlikely, that the encryption was implemented in ARM code in the unflashable region of memory, then
recovered by a method that I’ll explain later in this article.

It’s also possible that the encryption was reversed mathematically from samples. I think the mechanism
has a problem in that some plaintext, when repeated in the same pattern and at the same distance from
each other, is encrypted to the same ciphertext.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

The ROM contains a rather small amount of code, but as it isn’t included in the firmware updates, I
don’t have a copy. The only thing I care about from this code is how the first megabyte of MCU code is
validated. If and only if that validation succeeds, the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were patched, the validation found in the ROM would
fail, and the phone would refuse to communicate with anything. This won’t interrupt anything else, as the
phone would still need to boot in order to display an appropriate error message. The validation function in
the ROM is invoked from the MCU code, so that function call could be patched out, but again, the GSM
baseband would not be activated, and the phone wouldn’t be able to make any calls. It might sound as if this
is what the customer is looking for, but it’s not, as phone calls are still Kosher six days a week. Note that
Bluetooth still works when baseband doesn’t, and can be a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit checksum, which is done not for security
reasons but rather to check the phone’s flash memory for corruption. The right checksum value is found
somewhere in the first 0x100 bytes of the MCU. This checksum is easily fixed with any hex editor. If the
check fails, the phone will show a “Contact Service” message, then shut down.

At this point I didn’t know much about what kind of validation is performed on the first megabyte, but
I had a number of samples of official firmware that pass the validation. Every sample has a function that
resides in that megabyte of code and validates the rest of the code. If that function fails, meaning that I
patched something in the code coming after the first megabyte, it immediately reboots the phone. The funny
thing is that the CPU is so slow that I can get a few seconds to play with the phone before the reboot takes
place. Unfortunately, patching out this check still leaves me with no baseband, and thus no product.

24

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0000_0000 AD 7E B6 1B 23 10 03 40 C6 05 E4 01 20 A2 00 00
0000_0010 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF FF
0000_0020 FF FF FF FF F8 1F AA 02 50 65 61 4B FF FF FF FF
0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF C0 52 90 D4
0000_0070 4A E4 5C 8F 00 02 00 00 01 00 01 00 00 00 00 00
0000_0080 00 00 00 00 FF FF FF FF FF FF FF FF 01 CE 00 00
0000_0090 03 00 00 00 00 04 CC A2 00 04 CC A3 FF FF FF FF
0000_00A0 00 00 F1 EF 89 33 EB 2D 1F 09 3B DA C7 C0 3D 9F
0000_00B0 BB D3 29 98 01 C8 BC B0 06 6E A8 11 0E D1 69 67
0000_00C0 A4 A3 9A A5 BF 7B 27 5A E6 C7 61 2D F7 B8 70 9C
0000_00D0 D4 1C 09 96 AF 5B F2 05 20 92 49 DF D5 0B FC DE
0000_00E0 A8 30 B7 39 34 59 13 7D E7 BD 72 3F C7 CF B3 5A
0000_00F0 60 2C 5E 7D 63 17 56 C4 9F 6C C5 1A 01 BF B5 CF
0000_0100 EA 01 FF BE 00 FE 6A 84 EA 50 20 20 20 20 6A 04
0000_0110 2D CF 20 20 20 20 6A 01 9D 7C 20 20 20 20 6A 01
0000_0120 B3 C8 20 20 20 20 6A 01 A5 C2 20 20 20 20 6A 04

16 bit checksum. If this fails, the phone shows “Contact Service” message and shuts down.
If changed, the baseband fails to start and the phone shows no signal.
These bytes can be freely changed. They are likely version info and a public key.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

To attack this protection I had to better understand the integrity checks. I didn’t have a dump of the
code that checks the first megabyte, so I reversed the check performed on the rest of the binary in an attempt
to find some mistake. Using the FindCrypt IDA script, I found a few implementations of SHA1, MD5, and
other hashing functions that could be used—and should be used!—to check binary integrity.

Most importantly, I found a function that takes arguments of the hash type, data’s starting address, and
length, and returns a digest of that data. Following the cross references of that function brought me to the
following code:
FLASH:01086266 loc_1086266 ; CODE XREF: SHA1_check+1F6
FLASH:01086266 ; SHA1_check+1FC
FLASH:01086266 LDR R2 , =0x300C8D2
FLASH:01086268 MOVS R1 , #0x1C
FLASH:0108626A LDRB R0 , [R2 ,R0]
FLASH:0108626C MULS R1 , R0
FLASH:0108626E LDR R0 , =SHA1_check_related
FLASH:01086270 SUBS R0 , #0x80
FLASH:01086272 ADDS R0 , R1 , R0
FLASH:01086274 MOVS R4 , R0
FLASH:01086276 ADDS R0 , #0x80
FLASH:01086278 R1 = Star t
FLASH:01086278 LDR R1 , [R0,#0xC]
FLASH:0108627A LDR R2 , [R0,#0x10]
FLASH:0108627C LDR R0 , [R0,#0xC]
FLASH:0108627E DataLength = DataStart − DataEnd ;
FLASH:0108627E SUBS R3 , R2 , R0
FLASH:01086280 ADD R2 , SP , #0x38+hashLength
FLASH:01086282 STR R2 , [SP,#0x38+hashLengthCopy]
FLASH:01086284 LDRB R0 , [R6,#8]
FLASH:01086286 DataLength += 1 ;
FLASH:01086286 ADDS R3 , R3 , #1
FLASH:01086288 ADDS R7 , R7 , R3

25

FLASH:0108628A R2 = DataLength ;
FLASH:0108628A MOVS R2 , R3
FLASH:0108628C ADD R3 , SP , #0x38+hashToCompare
FLASH:0108628E BL hashInitUpdateNDigest_j
FLASH:0108628E
FLASH:01086292 CMP R0 , #0
FLASH:01086294 BNE loc_10862A4
FLASH:01086294
FLASH:01086296 LDR R0 , =hashRelatedVar
FLASH:01086298 MOVS R1 , #1
FLASH:0108629A BL MONServerRelated_over1
FLASH:0108629A
FLASH:0108629E MOVS R0 , #4
FLASH:010862A0 BL r e s e t

The digest function is hashInitUpdateNDigest_j, of course. The SHA1_check_related address had the
following data in it:
FLASH:01089DD4 SHA1_check_related DCD 0xB5213665 ; DATA XREF: SHA1_check : loc_108616A
FLASH:01089DD4 ; SHA1_check+9E . . .
FLASH:01089DD8 DCD 3
FLASH:01089DDC SHA1_check_info DCD 0x200400AA ; DATA XREF: SHA1_check+44
FLASH:01089DE0 #1
FLASH:01089DE0 DCD loc_1100100 ; S tar t
FLASH:01089DE4 DCD loc_13AFFFE+1 ; End
FLASH:01089DE8 DCD 0xEE41347A ; \
FLASH:01089DEC DCD 0x8C88F02F ; \
FLASH:01089DF0 DCD 0x563BB973 ; = SHA1SUM
FLASH:01089DF4 DCD 0x040E1233 ; /
FLASH:01089DF8 DCD 0x8C03AFFA ; /
FLASH:01089DFC #2
FLASH:01089DFC DCD loc_13B0000
FLASH:01089E00 DCD loc_165FFFE+1
FLASH:01089E04 DCD 0xCC29F881
FLASH:01089E08 DCD 0xA441D8CD
FLASH:01089E0C DCD 0x7CEF5FEF
FLASH:01089E10 DCD 0xC35FE703
FLASH:01089E14 DCD 0x8BD3D4D6
FLASH:01089E18 #3
FLASH:01089E18 DCD loc_1660000
FLASH:01089E1C DCD loc_190FFFC+3
FLASH:01089E20 DCD 0x77439E9B
FLASH:01089E24 DCD 0x530F0029
FLASH:01089E28 DCD 0xA7490D5B
FLASH:01089E2C DCD 0x4E621094
FLASH:01089E30 DCD 0xC7844FE3
FLASH:01089E34 #4
FLASH:01089E34 DCD loc_1910000
FLASH:01089E38 DCD dword_1BFB5C8+7
FLASH:01089E3C DCD 0xA87ABFB7
FLASH:01089E40 DCD 0xFB44D95E
FLASH:01089E44 DCD 0xC3E95DCA
FLASH:01089E48 DCD 0xE190ECCA
FLASH:01089E4C DCD 0x9D100390
FLASH:01089E50 DCD 0
FLASH:01089E54 DCD 0

This is SHA1 digest of other arrays of binary, in chunks of about 0x002B_0000 bytes. All of the data

26

from 0x0100_0100 to 0x0110_0100 is protected by the ROM. The data from 0x0110_0100 to 0x013A_FFFF
digest to EE41347A8C88F02F563BB973040E12338C03AFFA under SHA1. So I guessed that this function is
the validation function that uses SHA1 to check the rest of the binary.

Later on in the same function I found the following code.

FLASH:010862E0 f o r (i = 0 ; i < hashLength ; ++i) {
FLASH:010862E0
FLASH:010862E0 loc_10862E0 ; CODE XREF: SHA1_check+1CC
FLASH:010862E0 ADDS R3 , R4 , R0
FLASH:010862E2 ADDS R3 , #0x80
FLASH:010862E4 ADD R2 , SP , #0x38+hashToCompare
FLASH:010862E6 LDRB R2 , [R2 ,R0]
FLASH:010862E8 LDRB R3 , [R3,#0x14]
FLASH:010862EA i f (hash [i] != hashToCompare [i]) {
FLASH:010862EA return Fal se ;
FLASH:010862EA }
FLASH:010862EA CMP R2 , R3
FLASH:010862EC BEQ loc_10862F0
FLASH:010862EC
FLASH:010862EE MOVS R5 , #1
FLASH:010862EE
FLASH:010862F0
FLASH:010862F0 loc_10862F0 ; CODE XREF: SHA1_check+1C4
FLASH:010862F0 ADDS R0 , R0 , #1
FLASH:010862F0
FLASH:010862F2
FLASH:010862F2 loop ; CODE XREF: SHA1_check+1B6
FLASH:010862F2 CMP R0 , R1
FLASH:010862F4 }
FLASH:010862F4 BCC loc_10862E0
FLASH:010862F4
FLASH:010862F6 CMP R5 , #1
FLASH:010862F8 // Patch here to 0xe006
FLASH:010862F8
FLASH:010862F8 BNE loc_1086308
FLASH:010862F8
FLASH:010862FA LDR R0 , =0x7D0005
FLASH:010862FC BL HashMismatch
FLASH:010862FC
FLASH:01086300 MOVS R0 , #4
FLASH:01086302 BL r e s e t
FLASH:01086302
FLASH:01086306 B loc_1086310

This function performs the comparison of the calculated hash to the one in the table, and, should that
fail to match, it calls the HashMismatch() function and then the reset function with Error Code 4.

The HashMismatch() function looks a bit like this.

FLASH:01085320 ; At t r ibute s : thunk
FLASH:01085320
FLASH:01085320 HashMismatch ; CODE XREF: sub_1084232+38
FLASH:01085320 ; sub_1085B6C+6C . . .
FLASH:01085320 BX PC
FLASH:01085320
FLASH:01085320 ; −−−
FLASH:01085322 ALIGN 4
FLASH:01085322 ; End o f func t i on HashMismatch

27

FLASH:01085322
FLASH:01085324 CODE32
FLASH:01085324
FLASH:01085324 ; =============== S U B R O U T I N E =======================================
FLASH:01085324
FLASH:01085324
FLASH:01085324 sub_1085324 ; CODE XREF: HashMismatch
FLASH:01085324 LDR R12 , =(sub_1453178+1)
FLASH:01085328 BX R12 ; sub_1453178
FLASH:01085328
FLASH:01085328 ; End o f func t i on sub_1085324
FLASH:01085328
FLASH:01085328 ; −−−
FLASH:0108532C off_108532C DCD sub_1453178+1 ; DATA XREF: sub_1085324
FLASH:01085330 CODE16
FLASH:01085330
FLASH:01085330 ; =============== S U B R O U T I N E =======================================
FLASH:01085330
FLASH:01085330 ; At t r ibute s : thunk
FLASH:01085330
FLASH:01085330 sub_1085330 ; CODE XREF: sub_10836E6+86
FLASH:01085330 ; sub_10874BA+3C . . .
FLASH:01085330 BX PC
FLASH:01085330
FLASH:01085330 ; −−−
FLASH:01085332 ALIGN 4
FLASH:01085332 ; End o f func t i on sub_1085330
FLASH:01085332
FLASH:01085334 CODE32

Please recall that ARM has two different instruction sets, the 32-bit wide ARM instructions and the
more efficient, but less powerful, variable-length Thumb instructions. Then note that ARM code is used for
a far jump, which Thumb cannot do directly.

Therefore what I have is code that is secured and is well checked by the ROM, which implements a SHA1
hash on the rest of the code. When the check fails, it uses the code that it just failed to verify to alert the
user that there is a problem with the binary! It’s right there at 0x0145_3178, in the fifth megabyte of the
binary.

From here writing a bypass was as simple as writing a small patch that fixes the Binary Mismatch flag
and jumps back to place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like Nokia? Well, beyond speculation, it’s a
common problem that high level programmers don’t pay attention to the lower layers of abstraction. Perhaps
the linking scripts weren’t carefully reviewed, or they were changed after the secure bootloader was written.

It could be that they really wanted to give the user some indication about the problem, or that they had
to invoke some cleanup function before shutdown, and by mistake, the relevant code was in another library
that got linked into higher addresses, and no one thought about it.

Anyhow, this is my favorite method for patching the flash. It doesn’t allow me to patch the first megabyte
directly, but I can accomplish all that I need by patching the later megabytes of firmware.

However, if that’s not enough, some neighbors reversed the first megabyte check for some of the phones
and made it public. Alas, the function they published is only good for some modules, and not for the entire
series.

How did they manage to do it, you ask? Well, it’s possible that it was silicon reverse engineering, but
another method is rumored to exist. The rumor has it that with JTAG debugging, one could single-step
through the program and spy on the Instruction Fetch stage of the pipeline in order to recover the instructions
from mask ROM. Replacing those instructions with a NOP before they reach the WriteBack stage of the

28

pipeline would linearize the code and allow the entire ROM to be read by the debugger while the CPU sees
it as one long NOP sled. As I’ve not tried this technique myself, I’d appreciate any concrete details on how
exactly it might be done.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Now that I had a way to patch the firmware, I could go on to creating a patched version to make this
phone Kosher. I had to reverse the menu functions entirely, which was quite a pain. I also had to reverse
the methods for loading strings in order to have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For instance, after removing Internet options from
all of the menus, I wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for the TCP implementation, but that would
be too much work, and as a side effect it might harm IPC. One can also suggest searching for things like the
default gateway and set it to something that would never work, but again that would be too much work. So
I searched for all the places where the word “GET” in all capitals was found in the binary. Luckily I had
just one match, and I patched it to “BET”, so from now on, no standard HTTP server would ever answer
requests. Moreover, to be on the extra, extra safe side I’ve also patched “POST” to “MOST”. Lets see them
downloading porn with that!

Be sure to read my next article for some fancy tricks involving the filesystem of the phone.

29

