
5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,
As you may or may not know, demons lurk within ELF metadata. If you have not yet been introduced

to these creatures, please put this paper down and take a look at either our talk given at 29C39, or our
soon-to-be released WOOT publication (in August 2013).

Although the ability to treat the loader as a Turing-complete machine is Pretty Neat, we realize that
there are a lot of useful computation vectors built right into the libraries that are mapped into the loader
and executable’s address space. Instead of re-inventing the wheel, in this POC sermon we’d like to begin
exploring how to harness the power given to us by the perhaps almighty libc.

The System V amd64 ABI scripture10 in combination with the eglibc-2.17 writings have provided us ELF
demon-tamers with the mighty useful IFUNC symbol. Any symbol of type IFUNC is treated as an indirect
function – the symbol’s value is treated as a function, which takes no arguments, and whose return value is
the patch.

The question we will explore from here on is: Can we harness the power of the IFUNC to invoke a piece
of libc?

After vaguely thinking about this problem for a couple of months, we have finally made progress towards
the answer.

Consider the exit() library call. Although one may question why we would want to craft metadata that
causes a exit() to be invoked, we will do so anyway, because it is one of the simplest calls we can make,
because the single argument it takes is not particularly important, and success is immediately obvious.

To invoke exit(), we must lookup the following information when we are compiling the crafted metadata
into some host executable. This is accomplished in three steps, as we explain in our prior work.

1. The location of exit() in the libc binary.

2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation table.

To invoke exit(), we must accomplish the following during runtime:

1. Lookup the base address of libc.

2. Use this base address to calculate the location of exit() in memory.

3. Store the address of exit() in a dynamic IFUNC symbol.

4. Cause the symbol to be resolved.

. . . and then there was exit()!

Our prior work has demonstrated how to accomplish the first two tasks. Once the first two tasks have
been completed at runtime, we find ourselves with a normal symbol (which we will call symbol 0) whose
value is the location of exit(). At this point we have two ways to proceed: we can

(1) have a second dynamic symbol (named symbol 1) of type IFUNC and have relocation entry of type
R X86 64 64 which refers to symbol 0 and whose offset is set to the location of symbol 1’s values, causing
the location of ext() to be copied into symbol 1,

-or-
(2) update the type of the symbol that already has the address of exit() to that it becomes an IFUNC.

This can be done in a single relocation entry of type R X86 64, whose addend is that which is copied to the

9https://www.youtube.com/watch?v=dnLYoMIBhpo
10http://www.uclibc.org/docs/psABI-x86_64.pdf

10



first 8 bytes of symbol 0. If we set the addend to 0x0100000a00000000, we will find that the symbol type
will become 0x0a (IFUNC), the symbol shndx will be set as 01 so the IFUNC is treated as defined, and the
other fields in the symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a relocation entry of type R X86 64 64 that
references our IFUNC symbol, which will cause exit() to be invoked.

At this moment, you may be wondering how it may be possible to do more interesting things such as have
control of the argument passed to the function call. It turns out that this problem is still being researched.
In eglibc-2.17, at the time the IFUNC is called, the first argument is and will always be 0, the second
argument is the address of the function being called, and the third argument the addressed of the symbol
being referenced. Therefore at this level exec(0) is always called. It will clearly take some clever redirection
magic to be able to have control over the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest of ELF-discovery and be able to take this
work to the next level. If you do discover a path to argument control, we hope you will take the time to
share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

11


